| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 | 
							- using System;
 
- namespace ICSharpCode.SharpZipLib.Checksum
 
- {
 
- 	/// <summary>
 
- 	/// Computes Adler32 checksum for a stream of data. An Adler32
 
- 	/// checksum is not as reliable as a CRC32 checksum, but a lot faster to
 
- 	/// compute.
 
- 	///
 
- 	/// The specification for Adler32 may be found in RFC 1950.
 
- 	/// ZLIB Compressed Data Format Specification version 3.3)
 
- 	///
 
- 	///
 
- 	/// From that document:
 
- 	///
 
- 	///      "ADLER32 (Adler-32 checksum)
 
- 	///       This contains a checksum value of the uncompressed data
 
- 	///       (excluding any dictionary data) computed according to Adler-32
 
- 	///       algorithm. This algorithm is a 32-bit extension and improvement
 
- 	///       of the Fletcher algorithm, used in the ITU-T X.224 / ISO 8073
 
- 	///       standard.
 
- 	///
 
- 	///       Adler-32 is composed of two sums accumulated per byte: s1 is
 
- 	///       the sum of all bytes, s2 is the sum of all s1 values. Both sums
 
- 	///       are done modulo 65521. s1 is initialized to 1, s2 to zero.  The
 
- 	///       Adler-32 checksum is stored as s2*65536 + s1 in most-
 
- 	///       significant-byte first (network) order."
 
- 	///
 
- 	///  "8.2. The Adler-32 algorithm
 
- 	///
 
- 	///    The Adler-32 algorithm is much faster than the CRC32 algorithm yet
 
- 	///    still provides an extremely low probability of undetected errors.
 
- 	///
 
- 	///    The modulo on unsigned long accumulators can be delayed for 5552
 
- 	///    bytes, so the modulo operation time is negligible.  If the bytes
 
- 	///    are a, b, c, the second sum is 3a + 2b + c + 3, and so is position
 
- 	///    and order sensitive, unlike the first sum, which is just a
 
- 	///    checksum.  That 65521 is prime is important to avoid a possible
 
- 	///    large class of two-byte errors that leave the check unchanged.
 
- 	///    (The Fletcher checksum uses 255, which is not prime and which also
 
- 	///    makes the Fletcher check insensitive to single byte changes 0 -
 
- 	///    255.)
 
- 	///
 
- 	///    The sum s1 is initialized to 1 instead of zero to make the length
 
- 	///    of the sequence part of s2, so that the length does not have to be
 
- 	///    checked separately. (Any sequence of zeroes has a Fletcher
 
- 	///    checksum of zero.)"
 
- 	/// </summary>
 
- 	/// <see cref="ICSharpCode.SharpZipLib.Zip.Compression.Streams.InflaterInputStream"/>
 
- 	/// <see cref="ICSharpCode.SharpZipLib.Zip.Compression.Streams.DeflaterOutputStream"/>
 
- 	public sealed class Adler32 : IChecksum
 
- 	{
 
- 		#region Instance Fields
 
- 		/// <summary>
 
- 		/// largest prime smaller than 65536
 
- 		/// </summary>
 
- 		readonly static uint BASE = 65521;
 
- 		/// <summary>
 
- 		/// The CRC data checksum so far.
 
- 		/// </summary>
 
- 		uint checkValue;
 
- 		#endregion
 
- 		/// <summary>
 
- 		/// Initialise a default instance of <see cref="Adler32"></see>
 
- 		/// </summary>
 
- 		public Adler32()
 
- 		{
 
- 			Reset();
 
- 		}
 
- 		/// <summary>
 
- 		/// Resets the Adler32 data checksum as if no update was ever called.
 
- 		/// </summary>
 
- 		public void Reset()
 
- 		{
 
- 			checkValue = 1;
 
- 		}
 
- 		/// <summary>
 
- 		/// Returns the Adler32 data checksum computed so far.
 
- 		/// </summary>
 
- 		public long Value {
 
- 			get {
 
- 				return checkValue;
 
- 			}
 
- 		}
 
- 		/// <summary>
 
- 		/// Updates the checksum with the byte b.
 
- 		/// </summary>
 
- 		/// <param name="bval">
 
- 		/// The data value to add. The high byte of the int is ignored.
 
- 		/// </param>
 
- 		public void Update(int bval)
 
- 		{
 
- 			// We could make a length 1 byte array and call update again, but I
 
- 			// would rather not have that overhead
 
- 			uint s1 = checkValue & 0xFFFF;
 
- 			uint s2 = checkValue >> 16;
 
- 			s1 = (s1 + ((uint)bval & 0xFF)) % BASE;
 
- 			s2 = (s1 + s2) % BASE;
 
- 			checkValue = (s2 << 16) + s1;
 
- 		}
 
- 		/// <summary>
 
- 		/// Updates the Adler32 data checksum with the bytes taken from
 
- 		/// a block of data.
 
- 		/// </summary>
 
- 		/// <param name="buffer">Contains the data to update the checksum with.</param>
 
- 		public void Update(byte[] buffer)
 
- 		{
 
- 			if (buffer == null) {
 
- 				throw new ArgumentNullException("nameof(buffer)");
 
- 			}
 
- 			Update(buffer, 0, buffer.Length);
 
- 		}
 
- 		/// <summary>
 
- 		/// Update Adler32 data checksum based on a portion of a block of data
 
- 		/// </summary>
 
- 		/// <param name = "buffer">Contains the data to update the CRC with.</param>
 
- 		/// <param name = "offset">The offset into the buffer where the data starts</param>
 
- 		/// <param name = "count">The number of data bytes to update the CRC with.</param>
 
- 		public void Update(byte[] buffer, int offset, int count)
 
- 		{
 
- 			if (buffer == null) {
 
- 				throw new ArgumentNullException("nameof(buffer)");
 
- 			}
 
- 			if (offset < 0) {
 
- 				throw new ArgumentOutOfRangeException("nameof(offset)", "cannot be less than zero");
 
- 			}
 
- 			if (offset >= buffer.Length) {
 
- 				throw new ArgumentOutOfRangeException("nameof(offset)", "not a valid index into buffer");
 
- 			}
 
- 			if (count < 0) {
 
- 				throw new ArgumentOutOfRangeException("nameof(count)", "cannot be less than zero");
 
- 			}
 
- 			if (offset + count > buffer.Length) {
 
- 				throw new ArgumentOutOfRangeException("nameof(count)", "exceeds buffer size");
 
- 			}
 
- 			//(By Per Bothner)
 
- 			uint s1 = checkValue & 0xFFFF;
 
- 			uint s2 = checkValue >> 16;
 
- 			while (count > 0) {
 
- 				// We can defer the modulo operation:
 
- 				// s1 maximally grows from 65521 to 65521 + 255 * 3800
 
- 				// s2 maximally grows by 3800 * median(s1) = 2090079800 < 2^31
 
- 				int n = 3800;
 
- 				if (n > count) {
 
- 					n = count;
 
- 				}
 
- 				count -= n;
 
- 				while (--n >= 0) {
 
- 					s1 = s1 + (uint)(buffer[offset++] & 0xff);
 
- 					s2 = s2 + s1;
 
- 				}
 
- 				s1 %= BASE;
 
- 				s2 %= BASE;
 
- 			}
 
- 			checkValue = (s2 << 16) | s1;
 
- 		}
 
- 	}
 
- }
 
 
  |