| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433 | using System;using System.Collections.Generic;using Core.BRG;using Unity.Collections;using Unity.Collections.LowLevel.Unsafe;using Unity.Burst;using Unity.Mathematics;using Unity.Jobs;using UnityEngine;using UnityEngine.Rendering;/// <summary>/// BRG容器类,用于管理使用BatchRendererGroup的实例化渲染/// </summary>public unsafe class BRGRenderBasic{    // 在GLES模式下,BRG原始缓冲区是一个常量缓冲区(UBO)    private bool UseConstantBuffer => BatchRendererGroup.BufferTarget == BatchBufferTarget.ConstantBuffer;     private int m_maxInstances; // 此容器中的最大项目数    private int m_instanceCount; // 当前项目数量    private int m_alignedGPUWindowSize; // BRG原始窗口大小    private int m_maxInstancePerWindow; // 每个窗口的最大实例数    private int m_windowCount; // 窗口数量(在SSBO模式下为1,在UBO模式下为n)    private int m_totalGpuBufferSize; // 原始缓冲区的总大小    private NativeArray<float3x4> m_transfromBuffer; // 原始缓冲区的系统内存副本    public NativeArray<float4> m_sysmemColorBuffer;    private bool m_initialized; // 是否已初始化    private int m_instanceSize; // 项目大小(以字节为单位)    private BatchID[] m_batchIDs; // 每个窗口对应一个batchID    private BatchMaterialID m_materialID; // 材质ID    private BatchMeshID m_meshID; // 网格ID    private BatchRendererGroup m_BatchRendererGroup; // BRG对象    private GraphicsBuffer m_GPUPersistentInstanceData; // GPU原始缓冲区(可能是SSBO或UBO)    protected BRGSamples m_samples;    /// <summary>    /// 创建BRG对象并分配缓冲区    /// </summary>    /// <param name="mesh">要渲染的网格</param>    /// <param name="mat">要使用的材质</param>    /// <param name="maxInstances">最大实例数</param>    /// <param name="instanceSize">每个实例的大小(以字节为单位)</param>    /// <param name="castShadows">是否投射阴影</param>    /// <returns>初始化是否成功</returns>    protected bool Init(BRGSamples samples, int maxInstances, int instanceSize)    {        // 创建BRG对象,指定我们的BRG回调函数        m_BatchRendererGroup = new BatchRendererGroup(this.OnPerformCulling, IntPtr.Zero);        instanceSize+=(3*2*16); // 额外添加obj2world和world2obj矩阵的大小        m_instanceSize = instanceSize;        m_instanceCount = 0;        m_maxInstances = maxInstances;        m_samples = samples;        // BRG使用一个大的GPU缓冲区。这在几乎所有平台上都是一个原始缓冲区,在GLES上是一个常量缓冲区        // 在常量缓冲区的情况下,我们将其分割成几个大小为BatchRendererGroup.GetConstantBufferMaxWindowSize()字节的"窗口"        if (UseConstantBuffer)        {            // 获取常量缓冲区的最大窗口大小            m_alignedGPUWindowSize = BatchRendererGroup.GetConstantBufferMaxWindowSize();            // 计算每个窗口可以容纳的最大实例数            m_maxInstancePerWindow = m_alignedGPUWindowSize / instanceSize;            // 计算需要的窗口数量(向上取整)            m_windowCount = (m_maxInstances + m_maxInstancePerWindow - 1) / m_maxInstancePerWindow;            // 计算总的GPU缓冲区大小            m_totalGpuBufferSize = m_windowCount * m_alignedGPUWindowSize;            // 创建常量缓冲区(目标类型为Constant,大小为总字节数/16,每个元素16字节)            m_GPUPersistentInstanceData =                new GraphicsBuffer(GraphicsBuffer.Target.Constant, m_totalGpuBufferSize / 16, 16);        }        else        {            // 计算对齐后的GPU窗口大小,确保是16字节对齐 ((size + 15) & (-16) 是向上取整到16的倍数的位运算技巧)            m_alignedGPUWindowSize = (m_maxInstances * instanceSize + 15) & (-16);            // 在SSBO模式下,每个窗口可以容纳所有实例            m_maxInstancePerWindow = maxInstances;            // SSBO模式只需要一个窗口            m_windowCount = 1;            // 总的GPU缓冲区大小等于单个窗口大小            m_totalGpuBufferSize = m_windowCount * m_alignedGPUWindowSize;            // 创建原始缓冲区(目标类型为Raw,大小为总字节数/4,每个元素4字节)            m_GPUPersistentInstanceData = new GraphicsBuffer(GraphicsBuffer.Target.Raw, m_totalGpuBufferSize / 4, 4);        }        // 在我们的示例游戏中,我们处理3个实例化属性:obj2world、world2obj和baseColor        var batchMetadata = new NativeArray<MetadataValue>(2, Allocator.Temp, NativeArrayOptions.UninitializedMemory);        // 批处理元数据缓冲区        int objectToWorldID = Shader.PropertyToID("unity_ObjectToWorld");        int worldToObjectID = Shader.PropertyToID("unity_WorldToObject");        // int colorID = Shader.PropertyToID("_BaseColor");        // 创建大GPU原始缓冲区的系统内存副本        m_transfromBuffer =            new NativeArray<float3x4>(maxInstances * 2, Allocator.Persistent, NativeArrayOptions.ClearMemory);        m_sysmemColorBuffer =            new NativeArray<float4>(maxInstances, Allocator.Persistent, NativeArrayOptions.ClearMemory);        // register one kind of batch per "window" in the large BRG raw buffer        m_batchIDs = new BatchID[m_windowCount];        for (int b = 0; b < m_windowCount; b++)        {            // 设置obj2world矩阵属性元数据,偏移量为0            batchMetadata[0] = CreateMetadataValue(objectToWorldID, 0, true);            // 设置world2obj矩阵属性元数据,偏移量为窗口内矩阵数据之后            batchMetadata[1] = CreateMetadataValue(worldToObjectID, m_maxInstancePerWindow * 3 * 16, true);            int startOffset = m_maxInstancePerWindow * 3 * 2 * 16;            NativeArray<MetadataValue> metadata = ProInitBatchMetadata(startOffset,m_maxInstancePerWindow);            NativeArray<MetadataValue> newBatchMetadata = new NativeArray<MetadataValue>(                batchMetadata.Length + metadata.Length, Allocator.Temp, NativeArrayOptions.UninitializedMemory);            for (int i = 0; i < batchMetadata.Length; i++)            {                newBatchMetadata[i] = batchMetadata[i];            }            for (int i = 0; i < metadata.Length; i++)            {                newBatchMetadata[batchMetadata.Length + i] = metadata[i];            }            // // 设置颜色属性元数据,偏移量为窗口内所有矩阵数据之后            // batchMetadata[2] = CreateMetadataValue(colorID, m_maxInstancePerWindow * 3 * 2 * 16, true);            // 计算当前批次在GPU缓冲区中的偏移量            int offset = b * m_alignedGPUWindowSize;            // 添加批次到BatchRendererGroup,指定元数据、缓冲区句柄和偏移量            m_batchIDs[b] = m_BatchRendererGroup.AddBatch(newBatchMetadata, m_GPUPersistentInstanceData.bufferHandle,                (uint)offset, UseConstantBuffer ? (uint)m_alignedGPUWindowSize : 0);            newBatchMetadata.Dispose();            metadata.Dispose();        }        // 我们不再需要这个元数据描述数组        batchMetadata.Dispose();        // 设置非常大的边界以确保BRG永远不会被剔除        UnityEngine.Bounds bounds = ProGetBounds();        m_BatchRendererGroup.SetGlobalBounds(bounds);        // 注册网格和材质        if (m_samples.Mesh) m_meshID = m_BatchRendererGroup.RegisterMesh(m_samples.Mesh);        if (m_samples.Material) m_materialID = m_BatchRendererGroup.RegisterMaterial(m_samples.Material);        m_initialized = true;        return true;    }    protected virtual Bounds ProGetBounds()    {       return new Bounds(new Vector3(0, 0, 0), new Vector3(1048576.0f, 1048576.0f, 1048576.0f));    }    protected virtual NativeArray<MetadataValue> ProInitBatchMetadata(int startOffset,int count)    {        return new NativeArray<MetadataValue>(0, Allocator.Temp, NativeArrayOptions.UninitializedMemory);    }    /// <summary>    /// 更新位置信息    /// </summary>    /// <param name="instanceCount"></param>    /// <returns></returns>    protected bool UploadTransformData(int instanceCount)    {        if ((uint)instanceCount > (uint)m_maxInstances)            return false;        // 更新当前实例数量        m_instanceCount = instanceCount;        // 计算完整窗口的数量        int completeWindows = m_instanceCount / m_maxInstancePerWindow;        // 一次性更新所有完整的窗口        if (completeWindows >= 0)        {            // 计算需要更新的数据大小(以float4为单位)            // int sizeInFloat4 = (completeWindows * m_alignedGPUWindowSize) / (16 * 4);                   // 将系统内存缓冲区的数据上传到GPU缓冲区            m_GPUPersistentInstanceData.SetData(m_transfromBuffer, 0, 0, m_maxInstancePerWindow * 2);                     // int off = m_maxInstancePerWindow * 2 * 3 * 16;            // m_GPUPersistentInstanceData.SetData(m_sysmemColorBuffer, 0, off / 16, m_maxInstancePerWindow);        }        return true;    }    /// <summary>    /// 根据"instanceCount"上传最小的GPU数据    /// 由于使用了SoA且此类管理3个BRG属性(2个矩阵和1个颜色),最后一个窗口可能需要多达3次SetData调用    /// </summary>    /// <param name="instanceCount">实例数量</param>    /// <returns>上传是否成功</returns>    public bool UploadGpuData(int instanceCount,List<BatchShaderBind> shaderBinds=null)    {        // 检查实例数量是否超过最大限制        if ((uint)instanceCount > (uint)m_maxInstances)            return false;        // 更新当前实例数量        m_instanceCount = instanceCount;        // 计算完整窗口的数量        int completeWindows = m_instanceCount / m_maxInstancePerWindow;        // 一次性更新所有完整的窗口        if (completeWindows >= 0)        {            // 计算需要更新的数据大小(以float4为单位)            // int sizeInFloat4 = (completeWindows * m_alignedGPUWindowSize) / (16 * 4);                   // 将系统内存缓冲区的数据上传到GPU缓冲区            m_GPUPersistentInstanceData.SetData(m_transfromBuffer, 0, 0, m_maxInstancePerWindow * 2);            if (shaderBinds != null)            {                for (int i = 0; i < shaderBinds.Count; i++)                {                    shaderBinds[i].SetData(m_GPUPersistentInstanceData,m_instanceCount);                }            }            // int off = m_maxInstancePerWindow * 2 * 3 * 16;            // m_GPUPersistentInstanceData.SetData(m_sysmemColorBuffer, 0, off / 16, m_maxInstancePerWindow);        }        // 然后上传最后一个(不完整)窗口的数据        int lastBatchId = completeWindows;        // 计算最后一个窗口中的实例数量        int itemInLastBatch = m_instanceCount - m_maxInstancePerWindow * completeWindows;            // if (itemInLastBatch > 0)        // {        //        //     m_GPUPersistentInstanceData.SetData(m_transfromBuffer, 0, 0, itemInLastBatch * 3);        //     // 上传world2obj矩阵数据(每个实例3个float4)        //     m_GPUPersistentInstanceData.SetData(m_sysmemBuffer, offsetMat2, offsetMat2, itemInLastBatch * 3);        //     // // 上传颜色数据(每个实例1个float4)        //     // m_GPUPersistentInstanceData.SetData(m_sysmemBuffer, offsetColor, offsetColor, itemInLastBatch * 1);          // }        return true;    }    /// <summary>    /// 释放所有已分配的缓冲区    /// </summary>    public void Shutdown()    {        if (m_initialized)        {            for (uint b = 0; b < m_windowCount; b++)                m_BatchRendererGroup.RemoveBatch(m_batchIDs[b]);            m_BatchRendererGroup.UnregisterMaterial(m_materialID);            m_BatchRendererGroup.UnregisterMesh(m_meshID);            m_BatchRendererGroup.Dispose();            m_GPUPersistentInstanceData.Dispose();            m_transfromBuffer.Dispose();        }    }    /// <summary>    /// 返回系统内存缓冲区和窗口大小,以便BRG_Background和BRG_Debris可以用新内容填充缓冲区    /// </summary>    /// <param name="totalSize">总大小</param>    /// <param name="alignedWindowSize">对齐的窗口大小</param>    /// <returns>系统内存缓冲区</returns>    public NativeArray<float3x4> GetSysmemBuffer(out int totalSize, out int alignedWindowSize)    {        totalSize = m_totalGpuBufferSize;        alignedWindowSize = m_alignedGPUWindowSize;        return m_transfromBuffer;    }    /// <summary>    /// 创建32位元数据值的辅助函数。Bit 31表示属性是否每个实例都有不同的值    /// </summary>    /// <param name="nameID">属性名称ID</param>    /// <param name="gpuOffset">GPU偏移量</param>    /// <param name="isPerInstance">是否每个实例都不同</param>    /// <returns>元数据值</returns>    protected MetadataValue CreateMetadataValue(int nameID, int gpuOffset, bool isPerInstance)    {        // 定义实例化标志位(最高位,即第31位)        const uint kIsPerInstanceBit = 0x80000000;        return new MetadataValue        {            NameID = nameID, // Shader属性名称ID            // 将GPU偏移量与实例化标志位进行按位或运算            // 如果是实例化属性,则设置最高位为1,否则保持原偏移量            Value = (uint)gpuOffset | (isPerInstance ? (kIsPerInstanceBit) : 0),        };    }    /// <summary>    /// 在BRG回调函数期间分配BRG缓冲区的辅助函数    /// </summary>    /// <typeparam name="T">元素类型</typeparam>    /// <param name="count">元素数量</param>    /// <returns>分配的内存指针</returns>    private static T* Malloc<T>(uint count) where T : unmanaged    {        return (T*)UnsafeUtility.Malloc(            UnsafeUtility.SizeOf<T>() * count,            UnsafeUtility.AlignOf<T>(),            Allocator.TempJob);    }    /// <summary>    /// 每帧的主BRG入口点。在此示例中我们使用BatchCullingContext进行视锥剔除    /// 此回调负责用所有需要渲染的项目填充cullingOutput    /// </summary>    /// <param name="rendererGroup">渲染组</param>    /// <param name="cullingContext">剔除上下文</param>    /// <param name="cullingOutput">剔除输出</param>    /// <param name="userContext">用户上下文</param>    /// <returns>作业句柄</returns>    public virtual JobHandle OnPerformCulling(BatchRendererGroup rendererGroup, BatchCullingContext cullingContext,        BatchCullingOutput cullingOutput, IntPtr userContext)    {        if (m_initialized)        {            // 创建绘制命令结构体,用于存储渲染命令信息            BatchCullingOutputDrawCommands drawCommands = new BatchCullingOutputDrawCommands();            // 计算UBO模式下我们需要的绘制命令数量(每个窗口一个绘制命令)            int drawCommandCount = (m_instanceCount + m_maxInstancePerWindow - 1) / m_maxInstancePerWindow;            int maxInstancePerDrawCommand = m_maxInstancePerWindow;            drawCommands.drawCommandCount = drawCommandCount;            // 分配单个BatchDrawRange。(所有绘制命令都将引用此BatchDrawRange)            drawCommands.drawRangeCount = 1;            drawCommands.drawRanges = Malloc<BatchDrawRange>(1);            drawCommands.drawRanges[0] = new BatchDrawRange            {                // 绘制命令开始索引                drawCommandsBegin = 0,                // 绘制命令数量                drawCommandsCount = (uint)drawCommandCount,                // 过滤设置                filterSettings = new BatchFilterSettings                {                    // 渲染层掩码                    renderingLayerMask = 1,                    // 层级                    layer = 0,                    // 运动向量生成模式                    motionMode = MotionVectorGenerationMode.Camera,                    // 阴影投射模式,根据m_castShadows决定是否投射阴影                    shadowCastingMode = m_samples.castShadows ? ShadowCastingMode.On : ShadowCastingMode.Off,                    // 是否接收阴影                    receiveShadows = m_samples.receiveShadows,                    // 是否为静态阴影投射器                    staticShadowCaster = m_samples.staticShadowCaster,                    // 是否全部深度排序                    allDepthSorted = m_samples.allDepthSorted                }            };            // 如果有绘制命令需要处理            if (drawCommands.drawCommandCount > 0)            {                // 由于我们不需要剔除,可见性整数数组缓冲区对于每个绘制命令将始终是{0,1,2,3,...}                // 所以我们只需分配maxInstancePerDrawCommand并填充它                int visibilityArraySize = maxInstancePerDrawCommand;                // 如果实例数量小于最大实例数,则调整可见性数组大小                if (m_instanceCount < visibilityArraySize)                    visibilityArraySize = m_instanceCount;                // for (int i = 0; i < visibilityArraySize; i++)                // {                //                    // }                // 为可见性实例分配内存                drawCommands.visibleInstances = Malloc<int>((uint)visibilityArraySize);                // 由于在此上下文中我们不需要任何视锥剔除,我们将可见性数组填充为{0,1,2,3...}                for (int i = 0; i < visibilityArraySize; i++)                {                    drawCommands.visibleInstances[i] = i;                    // drawCommands.visibleInstances[i] = 0;                }                // 分配BatchDrawCommand数组(drawCommandCount个条目)                // 在SSBO模式下,drawCommandCount将仅为1                drawCommands.drawCommands = Malloc<BatchDrawCommand>((uint)drawCommandCount);                // 剩余需要处理的实例数                int left = m_instanceCount;                // 为每个绘制命令填充信息                for (int b = 0; b < drawCommandCount; b++)                {                    // 计算当前批次中的实例数量                    int inBatchCount = left > maxInstancePerDrawCommand ? maxInstancePerDrawCommand : left;                    drawCommands.drawCommands[b] = new BatchDrawCommand                    {                        // 可见性偏移量,所有绘制命令都使用相同的{0,1,2,3...}可见性数组                        visibleOffset = (uint)0,                        // 可见实例数量                        visibleCount = (uint)inBatchCount,                        // 批次ID                        batchID = m_batchIDs[b],                        // 材质ID                        materialID = m_materialID,                        // 网格ID                        meshID = m_meshID,                        // 子网格索引                        submeshIndex = 0,                        // 分割可见性掩码                        splitVisibilityMask = 0xff,                        // 标志位                        flags = BatchDrawCommandFlags.None,                        // 排序位置                        sortingPosition = 0                    };                    // 减去已处理的实例数                    left -= inBatchCount;                }            }            // 将绘制命令设置到剔除输出中            cullingOutput.drawCommands[0] = drawCommands;            // 实例排序位置设置为空            drawCommands.instanceSortingPositions = null;            // 实例排序位置浮点数计数设置为0            drawCommands.instanceSortingPositionFloatCount = 0;        }        // 返回空的作业句柄        return new JobHandle();    }    }
 |