BRGRenderBasic.cs 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433
  1. using System;
  2. using System.Collections.Generic;
  3. using Core.BRG;
  4. using Unity.Collections;
  5. using Unity.Collections.LowLevel.Unsafe;
  6. using Unity.Burst;
  7. using Unity.Mathematics;
  8. using Unity.Jobs;
  9. using UnityEngine;
  10. using UnityEngine.Rendering;
  11. /// <summary>
  12. /// BRG容器类,用于管理使用BatchRendererGroup的实例化渲染
  13. /// </summary>
  14. public unsafe class BRGRenderBasic
  15. {
  16. // 在GLES模式下,BRG原始缓冲区是一个常量缓冲区(UBO)
  17. private bool UseConstantBuffer => BatchRendererGroup.BufferTarget == BatchBufferTarget.ConstantBuffer;
  18. private int m_maxInstances; // 此容器中的最大项目数
  19. private int m_instanceCount; // 当前项目数量
  20. private int m_alignedGPUWindowSize; // BRG原始窗口大小
  21. private int m_maxInstancePerWindow; // 每个窗口的最大实例数
  22. private int m_windowCount; // 窗口数量(在SSBO模式下为1,在UBO模式下为n)
  23. private int m_totalGpuBufferSize; // 原始缓冲区的总大小
  24. private NativeArray<float3x4> m_transfromBuffer; // 原始缓冲区的系统内存副本
  25. public NativeArray<float4> m_sysmemColorBuffer;
  26. private bool m_initialized; // 是否已初始化
  27. private int m_instanceSize; // 项目大小(以字节为单位)
  28. private BatchID[] m_batchIDs; // 每个窗口对应一个batchID
  29. private BatchMaterialID m_materialID; // 材质ID
  30. private BatchMeshID m_meshID; // 网格ID
  31. private BatchRendererGroup m_BatchRendererGroup; // BRG对象
  32. private GraphicsBuffer m_GPUPersistentInstanceData; // GPU原始缓冲区(可能是SSBO或UBO)
  33. protected BRGSamples m_samples;
  34. /// <summary>
  35. /// 创建BRG对象并分配缓冲区
  36. /// </summary>
  37. /// <param name="mesh">要渲染的网格</param>
  38. /// <param name="mat">要使用的材质</param>
  39. /// <param name="maxInstances">最大实例数</param>
  40. /// <param name="instanceSize">每个实例的大小(以字节为单位)</param>
  41. /// <param name="castShadows">是否投射阴影</param>
  42. /// <returns>初始化是否成功</returns>
  43. protected bool Init(BRGSamples samples, int maxInstances, int instanceSize)
  44. {
  45. // 创建BRG对象,指定我们的BRG回调函数
  46. m_BatchRendererGroup = new BatchRendererGroup(this.OnPerformCulling, IntPtr.Zero);
  47. instanceSize+=(3*2*16); // 额外添加obj2world和world2obj矩阵的大小
  48. m_instanceSize = instanceSize;
  49. m_instanceCount = 0;
  50. m_maxInstances = maxInstances;
  51. m_samples = samples;
  52. // BRG使用一个大的GPU缓冲区。这在几乎所有平台上都是一个原始缓冲区,在GLES上是一个常量缓冲区
  53. // 在常量缓冲区的情况下,我们将其分割成几个大小为BatchRendererGroup.GetConstantBufferMaxWindowSize()字节的"窗口"
  54. if (UseConstantBuffer)
  55. {
  56. // 获取常量缓冲区的最大窗口大小
  57. m_alignedGPUWindowSize = BatchRendererGroup.GetConstantBufferMaxWindowSize();
  58. // 计算每个窗口可以容纳的最大实例数
  59. m_maxInstancePerWindow = m_alignedGPUWindowSize / instanceSize;
  60. // 计算需要的窗口数量(向上取整)
  61. m_windowCount = (m_maxInstances + m_maxInstancePerWindow - 1) / m_maxInstancePerWindow;
  62. // 计算总的GPU缓冲区大小
  63. m_totalGpuBufferSize = m_windowCount * m_alignedGPUWindowSize;
  64. // 创建常量缓冲区(目标类型为Constant,大小为总字节数/16,每个元素16字节)
  65. m_GPUPersistentInstanceData =
  66. new GraphicsBuffer(GraphicsBuffer.Target.Constant, m_totalGpuBufferSize / 16, 16);
  67. }
  68. else
  69. {
  70. // 计算对齐后的GPU窗口大小,确保是16字节对齐 ((size + 15) & (-16) 是向上取整到16的倍数的位运算技巧)
  71. m_alignedGPUWindowSize = (m_maxInstances * instanceSize + 15) & (-16);
  72. // 在SSBO模式下,每个窗口可以容纳所有实例
  73. m_maxInstancePerWindow = maxInstances;
  74. // SSBO模式只需要一个窗口
  75. m_windowCount = 1;
  76. // 总的GPU缓冲区大小等于单个窗口大小
  77. m_totalGpuBufferSize = m_windowCount * m_alignedGPUWindowSize;
  78. // 创建原始缓冲区(目标类型为Raw,大小为总字节数/4,每个元素4字节)
  79. m_GPUPersistentInstanceData = new GraphicsBuffer(GraphicsBuffer.Target.Raw, m_totalGpuBufferSize / 4, 4);
  80. }
  81. // 在我们的示例游戏中,我们处理3个实例化属性:obj2world、world2obj和baseColor
  82. var batchMetadata = new NativeArray<MetadataValue>(2, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
  83. // 批处理元数据缓冲区
  84. int objectToWorldID = Shader.PropertyToID("unity_ObjectToWorld");
  85. int worldToObjectID = Shader.PropertyToID("unity_WorldToObject");
  86. // int colorID = Shader.PropertyToID("_BaseColor");
  87. // 创建大GPU原始缓冲区的系统内存副本
  88. m_transfromBuffer =
  89. new NativeArray<float3x4>(maxInstances * 2, Allocator.Persistent, NativeArrayOptions.ClearMemory);
  90. m_sysmemColorBuffer =
  91. new NativeArray<float4>(maxInstances, Allocator.Persistent, NativeArrayOptions.ClearMemory);
  92. // register one kind of batch per "window" in the large BRG raw buffer
  93. m_batchIDs = new BatchID[m_windowCount];
  94. for (int b = 0; b < m_windowCount; b++)
  95. {
  96. // 设置obj2world矩阵属性元数据,偏移量为0
  97. batchMetadata[0] = CreateMetadataValue(objectToWorldID, 0, true);
  98. // 设置world2obj矩阵属性元数据,偏移量为窗口内矩阵数据之后
  99. batchMetadata[1] = CreateMetadataValue(worldToObjectID, m_maxInstancePerWindow * 3 * 16, true);
  100. int startOffset = m_maxInstancePerWindow * 3 * 2 * 16;
  101. NativeArray<MetadataValue> metadata = ProInitBatchMetadata(startOffset,m_maxInstancePerWindow);
  102. NativeArray<MetadataValue> newBatchMetadata = new NativeArray<MetadataValue>(
  103. batchMetadata.Length + metadata.Length, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
  104. for (int i = 0; i < batchMetadata.Length; i++)
  105. {
  106. newBatchMetadata[i] = batchMetadata[i];
  107. }
  108. for (int i = 0; i < metadata.Length; i++)
  109. {
  110. newBatchMetadata[batchMetadata.Length + i] = metadata[i];
  111. }
  112. // // 设置颜色属性元数据,偏移量为窗口内所有矩阵数据之后
  113. // batchMetadata[2] = CreateMetadataValue(colorID, m_maxInstancePerWindow * 3 * 2 * 16, true);
  114. // 计算当前批次在GPU缓冲区中的偏移量
  115. int offset = b * m_alignedGPUWindowSize;
  116. // 添加批次到BatchRendererGroup,指定元数据、缓冲区句柄和偏移量
  117. m_batchIDs[b] = m_BatchRendererGroup.AddBatch(newBatchMetadata, m_GPUPersistentInstanceData.bufferHandle,
  118. (uint)offset, UseConstantBuffer ? (uint)m_alignedGPUWindowSize : 0);
  119. newBatchMetadata.Dispose();
  120. metadata.Dispose();
  121. }
  122. // 我们不再需要这个元数据描述数组
  123. batchMetadata.Dispose();
  124. // 设置非常大的边界以确保BRG永远不会被剔除
  125. UnityEngine.Bounds bounds = ProGetBounds();
  126. m_BatchRendererGroup.SetGlobalBounds(bounds);
  127. // 注册网格和材质
  128. if (m_samples.Mesh) m_meshID = m_BatchRendererGroup.RegisterMesh(m_samples.Mesh);
  129. if (m_samples.Material) m_materialID = m_BatchRendererGroup.RegisterMaterial(m_samples.Material);
  130. m_initialized = true;
  131. return true;
  132. }
  133. protected virtual Bounds ProGetBounds()
  134. {
  135. return new Bounds(new Vector3(0, 0, 0), new Vector3(1048576.0f, 1048576.0f, 1048576.0f));
  136. }
  137. protected virtual NativeArray<MetadataValue> ProInitBatchMetadata(int startOffset,int count)
  138. {
  139. return new NativeArray<MetadataValue>(0, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
  140. }
  141. /// <summary>
  142. /// 更新位置信息
  143. /// </summary>
  144. /// <param name="instanceCount"></param>
  145. /// <returns></returns>
  146. protected bool UploadTransformData(int instanceCount)
  147. {
  148. if ((uint)instanceCount > (uint)m_maxInstances)
  149. return false;
  150. // 更新当前实例数量
  151. m_instanceCount = instanceCount;
  152. // 计算完整窗口的数量
  153. int completeWindows = m_instanceCount / m_maxInstancePerWindow;
  154. // 一次性更新所有完整的窗口
  155. if (completeWindows >= 0)
  156. {
  157. // 计算需要更新的数据大小(以float4为单位)
  158. // int sizeInFloat4 = (completeWindows * m_alignedGPUWindowSize) / (16 * 4);
  159. // 将系统内存缓冲区的数据上传到GPU缓冲区
  160. m_GPUPersistentInstanceData.SetData(m_transfromBuffer, 0, 0, m_maxInstancePerWindow * 2);
  161. // int off = m_maxInstancePerWindow * 2 * 3 * 16;
  162. // m_GPUPersistentInstanceData.SetData(m_sysmemColorBuffer, 0, off / 16, m_maxInstancePerWindow);
  163. }
  164. return true;
  165. }
  166. /// <summary>
  167. /// 根据"instanceCount"上传最小的GPU数据
  168. /// 由于使用了SoA且此类管理3个BRG属性(2个矩阵和1个颜色),最后一个窗口可能需要多达3次SetData调用
  169. /// </summary>
  170. /// <param name="instanceCount">实例数量</param>
  171. /// <returns>上传是否成功</returns>
  172. public bool UploadGpuData(int instanceCount,List<BatchShaderBind> shaderBinds=null)
  173. {
  174. // 检查实例数量是否超过最大限制
  175. if ((uint)instanceCount > (uint)m_maxInstances)
  176. return false;
  177. // 更新当前实例数量
  178. m_instanceCount = instanceCount;
  179. // 计算完整窗口的数量
  180. int completeWindows = m_instanceCount / m_maxInstancePerWindow;
  181. // 一次性更新所有完整的窗口
  182. if (completeWindows >= 0)
  183. {
  184. // 计算需要更新的数据大小(以float4为单位)
  185. // int sizeInFloat4 = (completeWindows * m_alignedGPUWindowSize) / (16 * 4);
  186. // 将系统内存缓冲区的数据上传到GPU缓冲区
  187. m_GPUPersistentInstanceData.SetData(m_transfromBuffer, 0, 0, m_maxInstancePerWindow * 2);
  188. if (shaderBinds != null)
  189. {
  190. for (int i = 0; i < shaderBinds.Count; i++)
  191. {
  192. shaderBinds[i].SetData(m_GPUPersistentInstanceData,m_instanceCount);
  193. }
  194. }
  195. // int off = m_maxInstancePerWindow * 2 * 3 * 16;
  196. // m_GPUPersistentInstanceData.SetData(m_sysmemColorBuffer, 0, off / 16, m_maxInstancePerWindow);
  197. }
  198. // 然后上传最后一个(不完整)窗口的数据
  199. int lastBatchId = completeWindows;
  200. // 计算最后一个窗口中的实例数量
  201. int itemInLastBatch = m_instanceCount - m_maxInstancePerWindow * completeWindows;
  202. // if (itemInLastBatch > 0)
  203. // {
  204. //
  205. // m_GPUPersistentInstanceData.SetData(m_transfromBuffer, 0, 0, itemInLastBatch * 3);
  206. // // 上传world2obj矩阵数据(每个实例3个float4)
  207. // m_GPUPersistentInstanceData.SetData(m_sysmemBuffer, offsetMat2, offsetMat2, itemInLastBatch * 3);
  208. // // // 上传颜色数据(每个实例1个float4)
  209. // // m_GPUPersistentInstanceData.SetData(m_sysmemBuffer, offsetColor, offsetColor, itemInLastBatch * 1);
  210. // }
  211. return true;
  212. }
  213. /// <summary>
  214. /// 释放所有已分配的缓冲区
  215. /// </summary>
  216. public void Shutdown()
  217. {
  218. if (m_initialized)
  219. {
  220. for (uint b = 0; b < m_windowCount; b++)
  221. m_BatchRendererGroup.RemoveBatch(m_batchIDs[b]);
  222. m_BatchRendererGroup.UnregisterMaterial(m_materialID);
  223. m_BatchRendererGroup.UnregisterMesh(m_meshID);
  224. m_BatchRendererGroup.Dispose();
  225. m_GPUPersistentInstanceData.Dispose();
  226. m_transfromBuffer.Dispose();
  227. }
  228. }
  229. /// <summary>
  230. /// 返回系统内存缓冲区和窗口大小,以便BRG_Background和BRG_Debris可以用新内容填充缓冲区
  231. /// </summary>
  232. /// <param name="totalSize">总大小</param>
  233. /// <param name="alignedWindowSize">对齐的窗口大小</param>
  234. /// <returns>系统内存缓冲区</returns>
  235. public NativeArray<float3x4> GetSysmemBuffer(out int totalSize, out int alignedWindowSize)
  236. {
  237. totalSize = m_totalGpuBufferSize;
  238. alignedWindowSize = m_alignedGPUWindowSize;
  239. return m_transfromBuffer;
  240. }
  241. /// <summary>
  242. /// 创建32位元数据值的辅助函数。Bit 31表示属性是否每个实例都有不同的值
  243. /// </summary>
  244. /// <param name="nameID">属性名称ID</param>
  245. /// <param name="gpuOffset">GPU偏移量</param>
  246. /// <param name="isPerInstance">是否每个实例都不同</param>
  247. /// <returns>元数据值</returns>
  248. protected MetadataValue CreateMetadataValue(int nameID, int gpuOffset, bool isPerInstance)
  249. {
  250. // 定义实例化标志位(最高位,即第31位)
  251. const uint kIsPerInstanceBit = 0x80000000;
  252. return new MetadataValue
  253. {
  254. NameID = nameID, // Shader属性名称ID
  255. // 将GPU偏移量与实例化标志位进行按位或运算
  256. // 如果是实例化属性,则设置最高位为1,否则保持原偏移量
  257. Value = (uint)gpuOffset | (isPerInstance ? (kIsPerInstanceBit) : 0),
  258. };
  259. }
  260. /// <summary>
  261. /// 在BRG回调函数期间分配BRG缓冲区的辅助函数
  262. /// </summary>
  263. /// <typeparam name="T">元素类型</typeparam>
  264. /// <param name="count">元素数量</param>
  265. /// <returns>分配的内存指针</returns>
  266. private static T* Malloc<T>(uint count) where T : unmanaged
  267. {
  268. return (T*)UnsafeUtility.Malloc(
  269. UnsafeUtility.SizeOf<T>() * count,
  270. UnsafeUtility.AlignOf<T>(),
  271. Allocator.TempJob);
  272. }
  273. /// <summary>
  274. /// 每帧的主BRG入口点。在此示例中我们使用BatchCullingContext进行视锥剔除
  275. /// 此回调负责用所有需要渲染的项目填充cullingOutput
  276. /// </summary>
  277. /// <param name="rendererGroup">渲染组</param>
  278. /// <param name="cullingContext">剔除上下文</param>
  279. /// <param name="cullingOutput">剔除输出</param>
  280. /// <param name="userContext">用户上下文</param>
  281. /// <returns>作业句柄</returns>
  282. public virtual JobHandle OnPerformCulling(BatchRendererGroup rendererGroup, BatchCullingContext cullingContext,
  283. BatchCullingOutput cullingOutput, IntPtr userContext)
  284. {
  285. if (m_initialized)
  286. {
  287. // 创建绘制命令结构体,用于存储渲染命令信息
  288. BatchCullingOutputDrawCommands drawCommands = new BatchCullingOutputDrawCommands();
  289. // 计算UBO模式下我们需要的绘制命令数量(每个窗口一个绘制命令)
  290. int drawCommandCount = (m_instanceCount + m_maxInstancePerWindow - 1) / m_maxInstancePerWindow;
  291. int maxInstancePerDrawCommand = m_maxInstancePerWindow;
  292. drawCommands.drawCommandCount = drawCommandCount;
  293. // 分配单个BatchDrawRange。(所有绘制命令都将引用此BatchDrawRange)
  294. drawCommands.drawRangeCount = 1;
  295. drawCommands.drawRanges = Malloc<BatchDrawRange>(1);
  296. drawCommands.drawRanges[0] = new BatchDrawRange
  297. {
  298. // 绘制命令开始索引
  299. drawCommandsBegin = 0,
  300. // 绘制命令数量
  301. drawCommandsCount = (uint)drawCommandCount,
  302. // 过滤设置
  303. filterSettings = new BatchFilterSettings
  304. {
  305. // 渲染层掩码
  306. renderingLayerMask = 1,
  307. // 层级
  308. layer = 0,
  309. // 运动向量生成模式
  310. motionMode = MotionVectorGenerationMode.Camera,
  311. // 阴影投射模式,根据m_castShadows决定是否投射阴影
  312. shadowCastingMode = m_samples.castShadows ? ShadowCastingMode.On : ShadowCastingMode.Off,
  313. // 是否接收阴影
  314. receiveShadows = m_samples.receiveShadows,
  315. // 是否为静态阴影投射器
  316. staticShadowCaster = m_samples.staticShadowCaster,
  317. // 是否全部深度排序
  318. allDepthSorted = m_samples.allDepthSorted
  319. }
  320. };
  321. // 如果有绘制命令需要处理
  322. if (drawCommands.drawCommandCount > 0)
  323. {
  324. // 由于我们不需要剔除,可见性整数数组缓冲区对于每个绘制命令将始终是{0,1,2,3,...}
  325. // 所以我们只需分配maxInstancePerDrawCommand并填充它
  326. int visibilityArraySize = maxInstancePerDrawCommand;
  327. // 如果实例数量小于最大实例数,则调整可见性数组大小
  328. if (m_instanceCount < visibilityArraySize)
  329. visibilityArraySize = m_instanceCount;
  330. // for (int i = 0; i < visibilityArraySize; i++)
  331. // {
  332. //
  333. // }
  334. // 为可见性实例分配内存
  335. drawCommands.visibleInstances = Malloc<int>((uint)visibilityArraySize);
  336. // 由于在此上下文中我们不需要任何视锥剔除,我们将可见性数组填充为{0,1,2,3...}
  337. for (int i = 0; i < visibilityArraySize; i++)
  338. {
  339. drawCommands.visibleInstances[i] = i;
  340. // drawCommands.visibleInstances[i] = 0;
  341. }
  342. // 分配BatchDrawCommand数组(drawCommandCount个条目)
  343. // 在SSBO模式下,drawCommandCount将仅为1
  344. drawCommands.drawCommands = Malloc<BatchDrawCommand>((uint)drawCommandCount);
  345. // 剩余需要处理的实例数
  346. int left = m_instanceCount;
  347. // 为每个绘制命令填充信息
  348. for (int b = 0; b < drawCommandCount; b++)
  349. {
  350. // 计算当前批次中的实例数量
  351. int inBatchCount = left > maxInstancePerDrawCommand ? maxInstancePerDrawCommand : left;
  352. drawCommands.drawCommands[b] = new BatchDrawCommand
  353. {
  354. // 可见性偏移量,所有绘制命令都使用相同的{0,1,2,3...}可见性数组
  355. visibleOffset = (uint)0,
  356. // 可见实例数量
  357. visibleCount = (uint)inBatchCount,
  358. // 批次ID
  359. batchID = m_batchIDs[b],
  360. // 材质ID
  361. materialID = m_materialID,
  362. // 网格ID
  363. meshID = m_meshID,
  364. // 子网格索引
  365. submeshIndex = 0,
  366. // 分割可见性掩码
  367. splitVisibilityMask = 0xff,
  368. // 标志位
  369. flags = BatchDrawCommandFlags.None,
  370. // 排序位置
  371. sortingPosition = 0
  372. };
  373. // 减去已处理的实例数
  374. left -= inBatchCount;
  375. }
  376. }
  377. // 将绘制命令设置到剔除输出中
  378. cullingOutput.drawCommands[0] = drawCommands;
  379. // 实例排序位置设置为空
  380. drawCommands.instanceSortingPositions = null;
  381. // 实例排序位置浮点数计数设置为0
  382. drawCommands.instanceSortingPositionFloatCount = 0;
  383. }
  384. // 返回空的作业句柄
  385. return new JobHandle();
  386. }
  387. }