| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139 | /* deflate.c -- compress data using the deflation algorithm * Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h *//* *  ALGORITHM * *      The "deflation" process depends on being able to identify portions *      of the input text which are identical to earlier input (within a *      sliding window trailing behind the input currently being processed). * *      The most straightforward technique turns out to be the fastest for *      most input files: try all possible matches and select the longest. *      The key feature of this algorithm is that insertions into the string *      dictionary are very simple and thus fast, and deletions are avoided *      completely. Insertions are performed at each input character, whereas *      string matches are performed only when the previous match ends. So it *      is preferable to spend more time in matches to allow very fast string *      insertions and avoid deletions. The matching algorithm for small *      strings is inspired from that of Rabin & Karp. A brute force approach *      is used to find longer strings when a small match has been found. *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze *      (by Leonid Broukhis). *         A previous version of this file used a more sophisticated algorithm *      (by Fiala and Greene) which is guaranteed to run in linear amortized *      time, but has a larger average cost, uses more memory and is patented. *      However the F&G algorithm may be faster for some highly redundant *      files if the parameter max_chain_length (described below) is too large. * *  ACKNOWLEDGEMENTS * *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and *      I found it in 'freeze' written by Leonid Broukhis. *      Thanks to many people for bug reports and testing. * *  REFERENCES * *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". *      Available in http://tools.ietf.org/html/rfc1951 * *      A description of the Rabin and Karp algorithm is given in the book *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252. * *      Fiala,E.R., and Greene,D.H. *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 * *//* @(#) $Id$ */#include "deflate.h"const char deflate_copyright[] =   " deflate 1.3.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler ";/*  If you use the zlib library in a product, an acknowledgment is welcome  in the documentation of your product. If for some reason you cannot  include such an acknowledgment, I would appreciate that you keep this  copyright string in the executable of your product. */typedef enum {    need_more,      /* block not completed, need more input or more output */    block_done,     /* block flush performed */    finish_started, /* finish started, need only more output at next deflate */    finish_done     /* finish done, accept no more input or output */} block_state;typedef block_state (*compress_func)(deflate_state *s, int flush);/* Compression function. Returns the block state after the call. */local block_state deflate_stored(deflate_state *s, int flush);local block_state deflate_fast(deflate_state *s, int flush);#ifndef FASTESTlocal block_state deflate_slow(deflate_state *s, int flush);#endiflocal block_state deflate_rle(deflate_state *s, int flush);local block_state deflate_huff(deflate_state *s, int flush);/* =========================================================================== * Local data */#define NIL 0/* Tail of hash chains */#ifndef TOO_FAR#  define TOO_FAR 4096#endif/* Matches of length 3 are discarded if their distance exceeds TOO_FAR *//* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */typedef struct config_s {   ush good_length; /* reduce lazy search above this match length */   ush max_lazy;    /* do not perform lazy search above this match length */   ush nice_length; /* quit search above this match length */   ush max_chain;   compress_func func;} config;#ifdef FASTESTlocal const config configuration_table[2] = {/*      good lazy nice chain *//* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only *//* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */#elselocal const config configuration_table[10] = {/*      good lazy nice chain *//* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only *//* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches *//* 2 */ {4,    5, 16,    8, deflate_fast},/* 3 */ {4,    6, 32,   32, deflate_fast},/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches *//* 5 */ {8,   16, 32,   32, deflate_slow},/* 6 */ {8,   16, 128, 128, deflate_slow},/* 7 */ {8,   32, 128, 256, deflate_slow},/* 8 */ {32, 128, 258, 1024, deflate_slow},/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */#endif/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different * meaning. *//* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))/* =========================================================================== * Update a hash value with the given input byte * IN  assertion: all calls to UPDATE_HASH are made with consecutive input *    characters, so that a running hash key can be computed from the previous *    key instead of complete recalculation each time. */#define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)/* =========================================================================== * Insert string str in the dictionary and set match_head to the previous head * of the hash chain (the most recent string with same hash key). Return * the previous length of the hash chain. * If this file is compiled with -DFASTEST, the compression level is forced * to 1, and no hash chains are maintained. * IN  assertion: all calls to INSERT_STRING are made with consecutive input *    characters and the first MIN_MATCH bytes of str are valid (except for *    the last MIN_MATCH-1 bytes of the input file). */#ifdef FASTEST#define INSERT_STRING(s, str, match_head) \   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \    match_head = s->head[s->ins_h], \    s->head[s->ins_h] = (Pos)(str))#else#define INSERT_STRING(s, str, match_head) \   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \    s->head[s->ins_h] = (Pos)(str))#endif/* =========================================================================== * Initialize the hash table (avoiding 64K overflow for 16 bit systems). * prev[] will be initialized on the fly. */#define CLEAR_HASH(s) \    do { \        s->head[s->hash_size - 1] = NIL; \        zmemzero((Bytef *)s->head, \                 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \    } while (0)/* =========================================================================== * Slide the hash table when sliding the window down (could be avoided with 32 * bit values at the expense of memory usage). We slide even when level == 0 to * keep the hash table consistent if we switch back to level > 0 later. */#if defined(__has_feature)#  if __has_feature(memory_sanitizer)     __attribute__((no_sanitize("memory")))#  endif#endiflocal void slide_hash(deflate_state *s) {    unsigned n, m;    Posf *p;    uInt wsize = s->w_size;    n = s->hash_size;    p = &s->head[n];    do {        m = *--p;        *p = (Pos)(m >= wsize ? m - wsize : NIL);    } while (--n);    n = wsize;#ifndef FASTEST    p = &s->prev[n];    do {        m = *--p;        *p = (Pos)(m >= wsize ? m - wsize : NIL);        /* If n is not on any hash chain, prev[n] is garbage but         * its value will never be used.         */    } while (--n);#endif}/* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read.  All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->next_in buffer and copying from it. * (See also flush_pending()). */local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {    unsigned len = strm->avail_in;    if (len > size) len = size;    if (len == 0) return 0;    strm->avail_in  -= len;    zmemcpy(buf, strm->next_in, len);    if (strm->state->wrap == 1) {        strm->adler = adler32(strm->adler, buf, len);    }#ifdef GZIP    else if (strm->state->wrap == 2) {        strm->adler = crc32(strm->adler, buf, len);    }#endif    strm->next_in  += len;    strm->total_in += len;    return len;}/* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD *    At least one byte has been read, or avail_in == 0; reads are *    performed for at least two bytes (required for the zip translate_eol *    option -- not supported here). */local void fill_window(deflate_state *s) {    unsigned n;    unsigned more;    /* Amount of free space at the end of the window. */    uInt wsize = s->w_size;    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");    do {        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);        /* Deal with !@#$% 64K limit: */        if (sizeof(int) <= 2) {            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {                more = wsize;            } else if (more == (unsigned)(-1)) {                /* Very unlikely, but possible on 16 bit machine if                 * strstart == 0 && lookahead == 1 (input done a byte at time)                 */                more--;            }        }        /* If the window is almost full and there is insufficient lookahead,         * move the upper half to the lower one to make room in the upper half.         */        if (s->strstart >= wsize + MAX_DIST(s)) {            zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);            s->match_start -= wsize;            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */            s->block_start -= (long) wsize;            if (s->insert > s->strstart)                s->insert = s->strstart;            slide_hash(s);            more += wsize;        }        if (s->strm->avail_in == 0) break;        /* If there was no sliding:         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&         *    more == window_size - lookahead - strstart         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)         * => more >= window_size - 2*WSIZE + 2         * In the BIG_MEM or MMAP case (not yet supported),         *   window_size == input_size + MIN_LOOKAHEAD  &&         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.         * Otherwise, window_size == 2*WSIZE so more >= 2.         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.         */        Assert(more >= 2, "more < 2");        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);        s->lookahead += n;        /* Initialize the hash value now that we have some input: */        if (s->lookahead + s->insert >= MIN_MATCH) {            uInt str = s->strstart - s->insert;            s->ins_h = s->window[str];            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);#if MIN_MATCH != 3            Call UPDATE_HASH() MIN_MATCH-3 more times#endif            while (s->insert) {                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);#ifndef FASTEST                s->prev[str & s->w_mask] = s->head[s->ins_h];#endif                s->head[s->ins_h] = (Pos)str;                str++;                s->insert--;                if (s->lookahead + s->insert < MIN_MATCH)                    break;            }        }        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,         * but this is not important since only literal bytes will be emitted.         */    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);    /* If the WIN_INIT bytes after the end of the current data have never been     * written, then zero those bytes in order to avoid memory check reports of     * the use of uninitialized (or uninitialised as Julian writes) bytes by     * the longest match routines.  Update the high water mark for the next     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.     */    if (s->high_water < s->window_size) {        ulg curr = s->strstart + (ulg)(s->lookahead);        ulg init;        if (s->high_water < curr) {            /* Previous high water mark below current data -- zero WIN_INIT             * bytes or up to end of window, whichever is less.             */            init = s->window_size - curr;            if (init > WIN_INIT)                init = WIN_INIT;            zmemzero(s->window + curr, (unsigned)init);            s->high_water = curr + init;        }        else if (s->high_water < (ulg)curr + WIN_INIT) {            /* High water mark at or above current data, but below current data             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up             * to end of window, whichever is less.             */            init = (ulg)curr + WIN_INIT - s->high_water;            if (init > s->window_size - s->high_water)                init = s->window_size - s->high_water;            zmemzero(s->window + s->high_water, (unsigned)init);            s->high_water += init;        }    }    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,           "not enough room for search");}/* ========================================================================= */int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,                         int stream_size) {    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,                         Z_DEFAULT_STRATEGY, version, stream_size);    /* To do: ignore strm->next_in if we use it as window */}/* ========================================================================= */int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,                          int windowBits, int memLevel, int strategy,                          const char *version, int stream_size) {    deflate_state *s;    int wrap = 1;    static const char my_version[] = ZLIB_VERSION;    if (version == Z_NULL || version[0] != my_version[0] ||        stream_size != sizeof(z_stream)) {        return Z_VERSION_ERROR;    }    if (strm == Z_NULL) return Z_STREAM_ERROR;    strm->msg = Z_NULL;    if (strm->zalloc == (alloc_func)0) {#ifdef Z_SOLO        return Z_STREAM_ERROR;#else        strm->zalloc = zcalloc;        strm->opaque = (voidpf)0;#endif    }    if (strm->zfree == (free_func)0)#ifdef Z_SOLO        return Z_STREAM_ERROR;#else        strm->zfree = zcfree;#endif#ifdef FASTEST    if (level != 0) level = 1;#else    if (level == Z_DEFAULT_COMPRESSION) level = 6;#endif    if (windowBits < 0) { /* suppress zlib wrapper */        wrap = 0;        if (windowBits < -15)            return Z_STREAM_ERROR;        windowBits = -windowBits;    }#ifdef GZIP    else if (windowBits > 15) {        wrap = 2;       /* write gzip wrapper instead */        windowBits -= 16;    }#endif    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {        return Z_STREAM_ERROR;    }    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));    if (s == Z_NULL) return Z_MEM_ERROR;    strm->state = (struct internal_state FAR *)s;    s->strm = strm;    s->status = INIT_STATE;     /* to pass state test in deflateReset() */    s->wrap = wrap;    s->gzhead = Z_NULL;    s->w_bits = (uInt)windowBits;    s->w_size = 1 << s->w_bits;    s->w_mask = s->w_size - 1;    s->hash_bits = (uInt)memLevel + 7;    s->hash_size = 1 << s->hash_bits;    s->hash_mask = s->hash_size - 1;    s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));    s->high_water = 0;      /* nothing written to s->window yet */    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */    /* We overlay pending_buf and sym_buf. This works since the average size     * for length/distance pairs over any compressed block is assured to be 31     * bits or less.     *     * Analysis: The longest fixed codes are a length code of 8 bits plus 5     * extra bits, for lengths 131 to 257. The longest fixed distance codes are     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest     * possible fixed-codes length/distance pair is then 31 bits total.     *     * sym_buf starts one-fourth of the way into pending_buf. So there are     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol     * in sym_buf is three bytes -- two for the distance and one for the     * literal/length. As each symbol is consumed, the pointer to the next     * sym_buf value to read moves forward three bytes. From that symbol, up to     * 31 bits are written to pending_buf. The closest the written pending_buf     * bits gets to the next sym_buf symbol to read is just before the last     * code is written. At that time, 31*(n - 2) bits have been written, just     * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1     * symbols are written.) The closest the writing gets to what is unread is     * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and     * can range from 128 to 32768.     *     * Therefore, at a minimum, there are 142 bits of space between what is     * written and what is read in the overlain buffers, so the symbols cannot     * be overwritten by the compressed data. That space is actually 139 bits,     * due to the three-bit fixed-code block header.     *     * That covers the case where either Z_FIXED is specified, forcing fixed     * codes, or when the use of fixed codes is chosen, because that choice     * results in a smaller compressed block than dynamic codes. That latter     * condition then assures that the above analysis also covers all dynamic     * blocks. A dynamic-code block will only be chosen to be emitted if it has     * fewer bits than a fixed-code block would for the same set of symbols.     * Therefore its average symbol length is assured to be less than 31. So     * the compressed data for a dynamic block also cannot overwrite the     * symbols from which it is being constructed.     */    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);    s->pending_buf_size = (ulg)s->lit_bufsize * 4;    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||        s->pending_buf == Z_NULL) {        s->status = FINISH_STATE;        strm->msg = ERR_MSG(Z_MEM_ERROR);        deflateEnd (strm);        return Z_MEM_ERROR;    }#ifdef LIT_MEM    s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));    s->l_buf = s->pending_buf + (s->lit_bufsize << 2);    s->sym_end = s->lit_bufsize - 1;#else    s->sym_buf = s->pending_buf + s->lit_bufsize;    s->sym_end = (s->lit_bufsize - 1) * 3;#endif    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K     * on 16 bit machines and because stored blocks are restricted to     * 64K-1 bytes.     */    s->level = level;    s->strategy = strategy;    s->method = (Byte)method;    return deflateReset(strm);}/* ========================================================================= * Check for a valid deflate stream state. Return 0 if ok, 1 if not. */local int deflateStateCheck(z_streamp strm) {    deflate_state *s;    if (strm == Z_NULL ||        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)        return 1;    s = strm->state;    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&#ifdef GZIP                                           s->status != GZIP_STATE &&#endif                                           s->status != EXTRA_STATE &&                                           s->status != NAME_STATE &&                                           s->status != COMMENT_STATE &&                                           s->status != HCRC_STATE &&                                           s->status != BUSY_STATE &&                                           s->status != FINISH_STATE))        return 1;    return 0;}/* ========================================================================= */int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,                                 uInt  dictLength) {    deflate_state *s;    uInt str, n;    int wrap;    unsigned avail;    z_const unsigned char *next;    if (deflateStateCheck(strm) || dictionary == Z_NULL)        return Z_STREAM_ERROR;    s = strm->state;    wrap = s->wrap;    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)        return Z_STREAM_ERROR;    /* when using zlib wrappers, compute Adler-32 for provided dictionary */    if (wrap == 1)        strm->adler = adler32(strm->adler, dictionary, dictLength);    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */    /* if dictionary would fill window, just replace the history */    if (dictLength >= s->w_size) {        if (wrap == 0) {            /* already empty otherwise */            CLEAR_HASH(s);            s->strstart = 0;            s->block_start = 0L;            s->insert = 0;        }        dictionary += dictLength - s->w_size;  /* use the tail */        dictLength = s->w_size;    }    /* insert dictionary into window and hash */    avail = strm->avail_in;    next = strm->next_in;    strm->avail_in = dictLength;    strm->next_in = (z_const Bytef *)dictionary;    fill_window(s);    while (s->lookahead >= MIN_MATCH) {        str = s->strstart;        n = s->lookahead - (MIN_MATCH-1);        do {            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);#ifndef FASTEST            s->prev[str & s->w_mask] = s->head[s->ins_h];#endif            s->head[s->ins_h] = (Pos)str;            str++;        } while (--n);        s->strstart = str;        s->lookahead = MIN_MATCH-1;        fill_window(s);    }    s->strstart += s->lookahead;    s->block_start = (long)s->strstart;    s->insert = s->lookahead;    s->lookahead = 0;    s->match_length = s->prev_length = MIN_MATCH-1;    s->match_available = 0;    strm->next_in = next;    strm->avail_in = avail;    s->wrap = wrap;    return Z_OK;}/* ========================================================================= */int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,                                 uInt *dictLength) {    deflate_state *s;    uInt len;    if (deflateStateCheck(strm))        return Z_STREAM_ERROR;    s = strm->state;    len = s->strstart + s->lookahead;    if (len > s->w_size)        len = s->w_size;    if (dictionary != Z_NULL && len)        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);    if (dictLength != Z_NULL)        *dictLength = len;    return Z_OK;}/* ========================================================================= */int ZEXPORT deflateResetKeep(z_streamp strm) {    deflate_state *s;    if (deflateStateCheck(strm)) {        return Z_STREAM_ERROR;    }    strm->total_in = strm->total_out = 0;    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */    strm->data_type = Z_UNKNOWN;    s = (deflate_state *)strm->state;    s->pending = 0;    s->pending_out = s->pending_buf;    if (s->wrap < 0) {        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */    }    s->status =#ifdef GZIP        s->wrap == 2 ? GZIP_STATE :#endif        INIT_STATE;    strm->adler =#ifdef GZIP        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :#endif        adler32(0L, Z_NULL, 0);    s->last_flush = -2;    _tr_init(s);    return Z_OK;}/* =========================================================================== * Initialize the "longest match" routines for a new zlib stream */local void lm_init(deflate_state *s) {    s->window_size = (ulg)2L*s->w_size;    CLEAR_HASH(s);    /* Set the default configuration parameters:     */    s->max_lazy_match   = configuration_table[s->level].max_lazy;    s->good_match       = configuration_table[s->level].good_length;    s->nice_match       = configuration_table[s->level].nice_length;    s->max_chain_length = configuration_table[s->level].max_chain;    s->strstart = 0;    s->block_start = 0L;    s->lookahead = 0;    s->insert = 0;    s->match_length = s->prev_length = MIN_MATCH-1;    s->match_available = 0;    s->ins_h = 0;}/* ========================================================================= */int ZEXPORT deflateReset(z_streamp strm) {    int ret;    ret = deflateResetKeep(strm);    if (ret == Z_OK)        lm_init(strm->state);    return ret;}/* ========================================================================= */int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {    if (deflateStateCheck(strm) || strm->state->wrap != 2)        return Z_STREAM_ERROR;    strm->state->gzhead = head;    return Z_OK;}/* ========================================================================= */int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;    if (pending != Z_NULL)        *pending = strm->state->pending;    if (bits != Z_NULL)        *bits = strm->state->bi_valid;    return Z_OK;}/* ========================================================================= */int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {    deflate_state *s;    int put;    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;    s = strm->state;#ifdef LIT_MEM    if (bits < 0 || bits > 16 ||        (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))        return Z_BUF_ERROR;#else    if (bits < 0 || bits > 16 ||        s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))        return Z_BUF_ERROR;#endif    do {        put = Buf_size - s->bi_valid;        if (put > bits)            put = bits;        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);        s->bi_valid += put;        _tr_flush_bits(s);        value >>= put;        bits -= put;    } while (bits);    return Z_OK;}/* ========================================================================= */int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {    deflate_state *s;    compress_func func;    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;    s = strm->state;#ifdef FASTEST    if (level != 0) level = 1;#else    if (level == Z_DEFAULT_COMPRESSION) level = 6;#endif    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {        return Z_STREAM_ERROR;    }    func = configuration_table[s->level].func;    if ((strategy != s->strategy || func != configuration_table[level].func) &&        s->last_flush != -2) {        /* Flush the last buffer: */        int err = deflate(strm, Z_BLOCK);        if (err == Z_STREAM_ERROR)            return err;        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)            return Z_BUF_ERROR;    }    if (s->level != level) {        if (s->level == 0 && s->matches != 0) {            if (s->matches == 1)                slide_hash(s);            else                CLEAR_HASH(s);            s->matches = 0;        }        s->level = level;        s->max_lazy_match   = configuration_table[level].max_lazy;        s->good_match       = configuration_table[level].good_length;        s->nice_match       = configuration_table[level].nice_length;        s->max_chain_length = configuration_table[level].max_chain;    }    s->strategy = strategy;    return Z_OK;}/* ========================================================================= */int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,                        int nice_length, int max_chain) {    deflate_state *s;    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;    s = strm->state;    s->good_match = (uInt)good_length;    s->max_lazy_match = (uInt)max_lazy;    s->nice_match = nice_length;    s->max_chain_length = (uInt)max_chain;    return Z_OK;}/* ========================================================================= * For the default windowBits of 15 and memLevel of 8, this function returns a * close to exact, as well as small, upper bound on the compressed size. This * is an expansion of ~0.03%, plus a small constant. * * For any setting other than those defaults for windowBits and memLevel, one * of two worst case bounds is returned. This is at most an expansion of ~4% or * ~13%, plus a small constant. * * Both the 0.03% and 4% derive from the overhead of stored blocks. The first * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second * is for stored blocks of 127 bytes (the worst case memLevel == 1). The * expansion results from five bytes of header for each stored block. * * The larger expansion of 13% results from a window size less than or equal to * the symbols buffer size (windowBits <= memLevel + 7). In that case some of * the data being compressed may have slid out of the sliding window, impeding * a stored block from being emitted. Then the only choice is a fixed or * dynamic block, where a fixed block limits the maximum expansion to 9 bits * per 8-bit byte, plus 10 bits for every block. The smallest block size for * which this can occur is 255 (memLevel == 2). * * Shifts are used to approximate divisions, for speed. */uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {    deflate_state *s;    uLong fixedlen, storelen, wraplen;    /* upper bound for fixed blocks with 9-bit literals and length 255       (memLevel == 2, which is the lowest that may not use stored blocks) --       ~13% overhead plus a small constant */    fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +               (sourceLen >> 9) + 4;    /* upper bound for stored blocks with length 127 (memLevel == 1) --       ~4% overhead plus a small constant */    storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +               (sourceLen >> 11) + 7;    /* if can't get parameters, return larger bound plus a zlib wrapper */    if (deflateStateCheck(strm))        return (fixedlen > storelen ? fixedlen : storelen) + 6;    /* compute wrapper length */    s = strm->state;    switch (s->wrap) {    case 0:                                 /* raw deflate */        wraplen = 0;        break;    case 1:                                 /* zlib wrapper */        wraplen = 6 + (s->strstart ? 4 : 0);        break;#ifdef GZIP    case 2:                                 /* gzip wrapper */        wraplen = 18;        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */            Bytef *str;            if (s->gzhead->extra != Z_NULL)                wraplen += 2 + s->gzhead->extra_len;            str = s->gzhead->name;            if (str != Z_NULL)                do {                    wraplen++;                } while (*str++);            str = s->gzhead->comment;            if (str != Z_NULL)                do {                    wraplen++;                } while (*str++);            if (s->gzhead->hcrc)                wraplen += 2;        }        break;#endif    default:                                /* for compiler happiness */        wraplen = 6;    }    /* if not default parameters, return one of the conservative bounds */    if (s->w_bits != 15 || s->hash_bits != 8 + 7)        return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +               wraplen;    /* default settings: return tight bound for that case -- ~0.03% overhead       plus a small constant */    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +           (sourceLen >> 25) + 13 - 6 + wraplen;}/* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */local void putShortMSB(deflate_state *s, uInt b) {    put_byte(s, (Byte)(b >> 8));    put_byte(s, (Byte)(b & 0xff));}/* ========================================================================= * Flush as much pending output as possible. All deflate() output, except for * some deflate_stored() output, goes through this function so some * applications may wish to modify it to avoid allocating a large * strm->next_out buffer and copying into it. (See also read_buf()). */local void flush_pending(z_streamp strm) {    unsigned len;    deflate_state *s = strm->state;    _tr_flush_bits(s);    len = s->pending;    if (len > strm->avail_out) len = strm->avail_out;    if (len == 0) return;    zmemcpy(strm->next_out, s->pending_out, len);    strm->next_out  += len;    s->pending_out  += len;    strm->total_out += len;    strm->avail_out -= len;    s->pending      -= len;    if (s->pending == 0) {        s->pending_out = s->pending_buf;    }}/* =========================================================================== * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1]. */#define HCRC_UPDATE(beg) \    do { \        if (s->gzhead->hcrc && s->pending > (beg)) \            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \                                s->pending - (beg)); \    } while (0)/* ========================================================================= */int ZEXPORT deflate(z_streamp strm, int flush) {    int old_flush; /* value of flush param for previous deflate call */    deflate_state *s;    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {        return Z_STREAM_ERROR;    }    s = strm->state;    if (strm->next_out == Z_NULL ||        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||        (s->status == FINISH_STATE && flush != Z_FINISH)) {        ERR_RETURN(strm, Z_STREAM_ERROR);    }    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);    old_flush = s->last_flush;    s->last_flush = flush;    /* Flush as much pending output as possible */    if (s->pending != 0) {        flush_pending(strm);        if (strm->avail_out == 0) {            /* Since avail_out is 0, deflate will be called again with             * more output space, but possibly with both pending and             * avail_in equal to zero. There won't be anything to do,             * but this is not an error situation so make sure we             * return OK instead of BUF_ERROR at next call of deflate:             */            s->last_flush = -1;            return Z_OK;        }    /* Make sure there is something to do and avoid duplicate consecutive     * flushes. For repeated and useless calls with Z_FINISH, we keep     * returning Z_STREAM_END instead of Z_BUF_ERROR.     */    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&               flush != Z_FINISH) {        ERR_RETURN(strm, Z_BUF_ERROR);    }    /* User must not provide more input after the first FINISH: */    if (s->status == FINISH_STATE && strm->avail_in != 0) {        ERR_RETURN(strm, Z_BUF_ERROR);    }    /* Write the header */    if (s->status == INIT_STATE && s->wrap == 0)        s->status = BUSY_STATE;    if (s->status == INIT_STATE) {        /* zlib header */        uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;        uInt level_flags;        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)            level_flags = 0;        else if (s->level < 6)            level_flags = 1;        else if (s->level == 6)            level_flags = 2;        else            level_flags = 3;        header |= (level_flags << 6);        if (s->strstart != 0) header |= PRESET_DICT;        header += 31 - (header % 31);        putShortMSB(s, header);        /* Save the adler32 of the preset dictionary: */        if (s->strstart != 0) {            putShortMSB(s, (uInt)(strm->adler >> 16));            putShortMSB(s, (uInt)(strm->adler & 0xffff));        }        strm->adler = adler32(0L, Z_NULL, 0);        s->status = BUSY_STATE;        /* Compression must start with an empty pending buffer */        flush_pending(strm);        if (s->pending != 0) {            s->last_flush = -1;            return Z_OK;        }    }#ifdef GZIP    if (s->status == GZIP_STATE) {        /* gzip header */        strm->adler = crc32(0L, Z_NULL, 0);        put_byte(s, 31);        put_byte(s, 139);        put_byte(s, 8);        if (s->gzhead == Z_NULL) {            put_byte(s, 0);            put_byte(s, 0);            put_byte(s, 0);            put_byte(s, 0);            put_byte(s, 0);            put_byte(s, s->level == 9 ? 2 :                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?                      4 : 0));            put_byte(s, OS_CODE);            s->status = BUSY_STATE;            /* Compression must start with an empty pending buffer */            flush_pending(strm);            if (s->pending != 0) {                s->last_flush = -1;                return Z_OK;            }        }        else {            put_byte(s, (s->gzhead->text ? 1 : 0) +                     (s->gzhead->hcrc ? 2 : 0) +                     (s->gzhead->extra == Z_NULL ? 0 : 4) +                     (s->gzhead->name == Z_NULL ? 0 : 8) +                     (s->gzhead->comment == Z_NULL ? 0 : 16)                     );            put_byte(s, (Byte)(s->gzhead->time & 0xff));            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));            put_byte(s, s->level == 9 ? 2 :                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?                      4 : 0));            put_byte(s, s->gzhead->os & 0xff);            if (s->gzhead->extra != Z_NULL) {                put_byte(s, s->gzhead->extra_len & 0xff);                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);            }            if (s->gzhead->hcrc)                strm->adler = crc32(strm->adler, s->pending_buf,                                    s->pending);            s->gzindex = 0;            s->status = EXTRA_STATE;        }    }    if (s->status == EXTRA_STATE) {        if (s->gzhead->extra != Z_NULL) {            ulg beg = s->pending;   /* start of bytes to update crc */            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;            while (s->pending + left > s->pending_buf_size) {                uInt copy = s->pending_buf_size - s->pending;                zmemcpy(s->pending_buf + s->pending,                        s->gzhead->extra + s->gzindex, copy);                s->pending = s->pending_buf_size;                HCRC_UPDATE(beg);                s->gzindex += copy;                flush_pending(strm);                if (s->pending != 0) {                    s->last_flush = -1;                    return Z_OK;                }                beg = 0;                left -= copy;            }            zmemcpy(s->pending_buf + s->pending,                    s->gzhead->extra + s->gzindex, left);            s->pending += left;            HCRC_UPDATE(beg);            s->gzindex = 0;        }        s->status = NAME_STATE;    }    if (s->status == NAME_STATE) {        if (s->gzhead->name != Z_NULL) {            ulg beg = s->pending;   /* start of bytes to update crc */            int val;            do {                if (s->pending == s->pending_buf_size) {                    HCRC_UPDATE(beg);                    flush_pending(strm);                    if (s->pending != 0) {                        s->last_flush = -1;                        return Z_OK;                    }                    beg = 0;                }                val = s->gzhead->name[s->gzindex++];                put_byte(s, val);            } while (val != 0);            HCRC_UPDATE(beg);            s->gzindex = 0;        }        s->status = COMMENT_STATE;    }    if (s->status == COMMENT_STATE) {        if (s->gzhead->comment != Z_NULL) {            ulg beg = s->pending;   /* start of bytes to update crc */            int val;            do {                if (s->pending == s->pending_buf_size) {                    HCRC_UPDATE(beg);                    flush_pending(strm);                    if (s->pending != 0) {                        s->last_flush = -1;                        return Z_OK;                    }                    beg = 0;                }                val = s->gzhead->comment[s->gzindex++];                put_byte(s, val);            } while (val != 0);            HCRC_UPDATE(beg);        }        s->status = HCRC_STATE;    }    if (s->status == HCRC_STATE) {        if (s->gzhead->hcrc) {            if (s->pending + 2 > s->pending_buf_size) {                flush_pending(strm);                if (s->pending != 0) {                    s->last_flush = -1;                    return Z_OK;                }            }            put_byte(s, (Byte)(strm->adler & 0xff));            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));            strm->adler = crc32(0L, Z_NULL, 0);        }        s->status = BUSY_STATE;        /* Compression must start with an empty pending buffer */        flush_pending(strm);        if (s->pending != 0) {            s->last_flush = -1;            return Z_OK;        }    }#endif    /* Start a new block or continue the current one.     */    if (strm->avail_in != 0 || s->lookahead != 0 ||        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {        block_state bstate;        bstate = s->level == 0 ? deflate_stored(s, flush) :                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :                 s->strategy == Z_RLE ? deflate_rle(s, flush) :                 (*(configuration_table[s->level].func))(s, flush);        if (bstate == finish_started || bstate == finish_done) {            s->status = FINISH_STATE;        }        if (bstate == need_more || bstate == finish_started) {            if (strm->avail_out == 0) {                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */            }            return Z_OK;            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call             * of deflate should use the same flush parameter to make sure             * that the flush is complete. So we don't have to output an             * empty block here, this will be done at next call. This also             * ensures that for a very small output buffer, we emit at most             * one empty block.             */        }        if (bstate == block_done) {            if (flush == Z_PARTIAL_FLUSH) {                _tr_align(s);            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */                _tr_stored_block(s, (char*)0, 0L, 0);                /* For a full flush, this empty block will be recognized                 * as a special marker by inflate_sync().                 */                if (flush == Z_FULL_FLUSH) {                    CLEAR_HASH(s);             /* forget history */                    if (s->lookahead == 0) {                        s->strstart = 0;                        s->block_start = 0L;                        s->insert = 0;                    }                }            }            flush_pending(strm);            if (strm->avail_out == 0) {              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */              return Z_OK;            }        }    }    if (flush != Z_FINISH) return Z_OK;    if (s->wrap <= 0) return Z_STREAM_END;    /* Write the trailer */#ifdef GZIP    if (s->wrap == 2) {        put_byte(s, (Byte)(strm->adler & 0xff));        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));        put_byte(s, (Byte)(strm->total_in & 0xff));        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));    }    else#endif    {        putShortMSB(s, (uInt)(strm->adler >> 16));        putShortMSB(s, (uInt)(strm->adler & 0xffff));    }    flush_pending(strm);    /* If avail_out is zero, the application will call deflate again     * to flush the rest.     */    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */    return s->pending != 0 ? Z_OK : Z_STREAM_END;}/* ========================================================================= */int ZEXPORT deflateEnd(z_streamp strm) {    int status;    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;    status = strm->state->status;    /* Deallocate in reverse order of allocations: */    TRY_FREE(strm, strm->state->pending_buf);    TRY_FREE(strm, strm->state->head);    TRY_FREE(strm, strm->state->prev);    TRY_FREE(strm, strm->state->window);    ZFREE(strm, strm->state);    strm->state = Z_NULL;    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;}/* ========================================================================= * Copy the source state to the destination state. * To simplify the source, this is not supported for 16-bit MSDOS (which * doesn't have enough memory anyway to duplicate compression states). */int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {#ifdef MAXSEG_64K    (void)dest;    (void)source;    return Z_STREAM_ERROR;#else    deflate_state *ds;    deflate_state *ss;    if (deflateStateCheck(source) || dest == Z_NULL) {        return Z_STREAM_ERROR;    }    ss = source->state;    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));    if (ds == Z_NULL) return Z_MEM_ERROR;    dest->state = (struct internal_state FAR *) ds;    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));    ds->strm = dest;    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||        ds->pending_buf == Z_NULL) {        deflateEnd (dest);        return Z_MEM_ERROR;    }    /* following zmemcpy do not work for 16-bit MSDOS */    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));    zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);#ifdef LIT_MEM    ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));    ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);#else    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;#endif    ds->l_desc.dyn_tree = ds->dyn_ltree;    ds->d_desc.dyn_tree = ds->dyn_dtree;    ds->bl_desc.dyn_tree = ds->bl_tree;    return Z_OK;#endif /* MAXSEG_64K */}#ifndef FASTEST/* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */local uInt longest_match(deflate_state *s, IPos cur_match) {    unsigned chain_length = s->max_chain_length;/* max hash chain length */    register Bytef *scan = s->window + s->strstart; /* current string */    register Bytef *match;                      /* matched string */    register int len;                           /* length of current match */    int best_len = (int)s->prev_length;         /* best match length so far */    int nice_match = s->nice_match;             /* stop if match long enough */    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?        s->strstart - (IPos)MAX_DIST(s) : NIL;    /* Stop when cur_match becomes <= limit. To simplify the code,     * we prevent matches with the string of window index 0.     */    Posf *prev = s->prev;    uInt wmask = s->w_mask;#ifdef UNALIGNED_OK    /* Compare two bytes at a time. Note: this is not always beneficial.     * Try with and without -DUNALIGNED_OK to check.     */    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;    register ush scan_start = *(ushf*)scan;    register ush scan_end   = *(ushf*)(scan + best_len - 1);#else    register Bytef *strend = s->window + s->strstart + MAX_MATCH;    register Byte scan_end1  = scan[best_len - 1];    register Byte scan_end   = scan[best_len];#endif    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.     * It is easy to get rid of this optimization if necessary.     */    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");    /* Do not waste too much time if we already have a good match: */    if (s->prev_length >= s->good_match) {        chain_length >>= 2;    }    /* Do not look for matches beyond the end of the input. This is necessary     * to make deflate deterministic.     */    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,           "need lookahead");    do {        Assert(cur_match < s->strstart, "no future");        match = s->window + cur_match;        /* Skip to next match if the match length cannot increase         * or if the match length is less than 2.  Note that the checks below         * for insufficient lookahead only occur occasionally for performance         * reasons.  Therefore uninitialized memory will be accessed, and         * conditional jumps will be made that depend on those values.         * However the length of the match is limited to the lookahead, so         * the output of deflate is not affected by the uninitialized values.         */#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)        /* This code assumes sizeof(unsigned short) == 2. Do not use         * UNALIGNED_OK if your compiler uses a different size.         */        if (*(ushf*)(match + best_len - 1) != scan_end ||            *(ushf*)match != scan_start) continue;        /* It is not necessary to compare scan[2] and match[2] since they are         * always equal when the other bytes match, given that the hash keys         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at         * strstart + 3, + 5, up to strstart + 257. We check for insufficient         * lookahead only every 4th comparison; the 128th check will be made         * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is         * necessary to put more guard bytes at the end of the window, or         * to check more often for insufficient lookahead.         */        Assert(scan[2] == match[2], "scan[2]?");        scan++, match++;        do {        } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&                 scan < strend);        /* The funny "do {}" generates better code on most compilers */        /* Here, scan <= window + strstart + 257 */        Assert(scan <= s->window + (unsigned)(s->window_size - 1),               "wild scan");        if (*scan == *match) scan++;        len = (MAX_MATCH - 1) - (int)(strend - scan);        scan = strend - (MAX_MATCH-1);#else /* UNALIGNED_OK */        if (match[best_len]     != scan_end  ||            match[best_len - 1] != scan_end1 ||            *match              != *scan     ||            *++match            != scan[1])      continue;        /* The check at best_len - 1 can be removed because it will be made         * again later. (This heuristic is not always a win.)         * It is not necessary to compare scan[2] and match[2] since they         * are always equal when the other bytes match, given that         * the hash keys are equal and that HASH_BITS >= 8.         */        scan += 2, match++;        Assert(*scan == *match, "match[2]?");        /* We check for insufficient lookahead only every 8th comparison;         * the 256th check will be made at strstart + 258.         */        do {        } while (*++scan == *++match && *++scan == *++match &&                 *++scan == *++match && *++scan == *++match &&                 *++scan == *++match && *++scan == *++match &&                 *++scan == *++match && *++scan == *++match &&                 scan < strend);        Assert(scan <= s->window + (unsigned)(s->window_size - 1),               "wild scan");        len = MAX_MATCH - (int)(strend - scan);        scan = strend - MAX_MATCH;#endif /* UNALIGNED_OK */        if (len > best_len) {            s->match_start = cur_match;            best_len = len;            if (len >= nice_match) break;#ifdef UNALIGNED_OK            scan_end = *(ushf*)(scan + best_len - 1);#else            scan_end1  = scan[best_len - 1];            scan_end   = scan[best_len];#endif        }    } while ((cur_match = prev[cur_match & wmask]) > limit             && --chain_length != 0);    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;    return s->lookahead;}#else /* FASTEST *//* --------------------------------------------------------------------------- * Optimized version for FASTEST only */local uInt longest_match(deflate_state *s, IPos cur_match) {    register Bytef *scan = s->window + s->strstart; /* current string */    register Bytef *match;                       /* matched string */    register int len;                           /* length of current match */    register Bytef *strend = s->window + s->strstart + MAX_MATCH;    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.     * It is easy to get rid of this optimization if necessary.     */    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,           "need lookahead");    Assert(cur_match < s->strstart, "no future");    match = s->window + cur_match;    /* Return failure if the match length is less than 2:     */    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;    /* The check at best_len - 1 can be removed because it will be made     * again later. (This heuristic is not always a win.)     * It is not necessary to compare scan[2] and match[2] since they     * are always equal when the other bytes match, given that     * the hash keys are equal and that HASH_BITS >= 8.     */    scan += 2, match += 2;    Assert(*scan == *match, "match[2]?");    /* We check for insufficient lookahead only every 8th comparison;     * the 256th check will be made at strstart + 258.     */    do {    } while (*++scan == *++match && *++scan == *++match &&             *++scan == *++match && *++scan == *++match &&             *++scan == *++match && *++scan == *++match &&             *++scan == *++match && *++scan == *++match &&             scan < strend);    Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");    len = MAX_MATCH - (int)(strend - scan);    if (len < MIN_MATCH) return MIN_MATCH - 1;    s->match_start = cur_match;    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;}#endif /* FASTEST */#ifdef ZLIB_DEBUG#define EQUAL 0/* result of memcmp for equal strings *//* =========================================================================== * Check that the match at match_start is indeed a match. */local void check_match(deflate_state *s, IPos start, IPos match, int length) {    /* check that the match is indeed a match */    Bytef *back = s->window + (int)match, *here = s->window + start;    IPos len = length;    if (match == (IPos)-1) {        /* match starts one byte before the current window -- just compare the           subsequent length-1 bytes */        back++;        here++;        len--;    }    if (zmemcmp(back, here, len) != EQUAL) {        fprintf(stderr, " start %u, match %d, length %d\n",                start, (int)match, length);        do {            fprintf(stderr, "(%02x %02x)", *back++, *here++);        } while (--len != 0);        z_error("invalid match");    }    if (z_verbose > 1) {        fprintf(stderr,"\\[%d,%d]", start - match, length);        do { putc(s->window[start++], stderr); } while (--length != 0);    }}#else#  define check_match(s, start, match, length)#endif /* ZLIB_DEBUG *//* =========================================================================== * Flush the current block, with given end-of-file flag. * IN assertion: strstart is set to the end of the current match. */#define FLUSH_BLOCK_ONLY(s, last) { \   _tr_flush_block(s, (s->block_start >= 0L ? \                   (charf *)&s->window[(unsigned)s->block_start] : \                   (charf *)Z_NULL), \                (ulg)((long)s->strstart - s->block_start), \                (last)); \   s->block_start = s->strstart; \   flush_pending(s->strm); \   Tracev((stderr,"[FLUSH]")); \}/* Same but force premature exit if necessary. */#define FLUSH_BLOCK(s, last) { \   FLUSH_BLOCK_ONLY(s, last); \   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \}/* Maximum stored block length in deflate format (not including header). */#define MAX_STORED 65535/* Minimum of a and b. */#define MIN(a, b) ((a) > (b) ? (b) : (a))/* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * * In case deflateParams() is used to later switch to a non-zero compression * level, s->matches (otherwise unused when storing) keeps track of the number * of hash table slides to perform. If s->matches is 1, then one hash table * slide will be done when switching. If s->matches is 2, the maximum value * allowed here, then the hash table will be cleared, since two or more slides * is the same as a clear. * * deflate_stored() is written to minimize the number of times an input byte is * copied. It is most efficient with large input and output buffers, which * maximizes the opportunities to have a single copy from next_in to next_out. */local block_state deflate_stored(deflate_state *s, int flush) {    /* Smallest worthy block size when not flushing or finishing. By default     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For     * large input and output buffers, the stored block size will be larger.     */    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);    /* Copy as many min_block or larger stored blocks directly to next_out as     * possible. If flushing, copy the remaining available input to next_out as     * stored blocks, if there is enough space.     */    unsigned len, left, have, last = 0;    unsigned used = s->strm->avail_in;    do {        /* Set len to the maximum size block that we can copy directly with the         * available input data and output space. Set left to how much of that         * would be copied from what's left in the window.         */        len = MAX_STORED;       /* maximum deflate stored block length */        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */        if (s->strm->avail_out < have)          /* need room for header */            break;            /* maximum stored block length that will fit in avail_out: */        have = s->strm->avail_out - have;        left = s->strstart - s->block_start;    /* bytes left in window */        if (len > (ulg)left + s->strm->avail_in)            len = left + s->strm->avail_in;     /* limit len to the input */        if (len > have)            len = have;                         /* limit len to the output */        /* If the stored block would be less than min_block in length, or if         * unable to copy all of the available input when flushing, then try         * copying to the window and the pending buffer instead. Also don't         * write an empty block when flushing -- deflate() does that.         */        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||                                flush == Z_NO_FLUSH ||                                len != left + s->strm->avail_in))            break;        /* Make a dummy stored block in pending to get the header bytes,         * including any pending bits. This also updates the debugging counts.         */        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;        _tr_stored_block(s, (char *)0, 0L, last);        /* Replace the lengths in the dummy stored block with len. */        s->pending_buf[s->pending - 4] = len;        s->pending_buf[s->pending - 3] = len >> 8;        s->pending_buf[s->pending - 2] = ~len;        s->pending_buf[s->pending - 1] = ~len >> 8;        /* Write the stored block header bytes. */        flush_pending(s->strm);#ifdef ZLIB_DEBUG        /* Update debugging counts for the data about to be copied. */        s->compressed_len += len << 3;        s->bits_sent += len << 3;#endif        /* Copy uncompressed bytes from the window to next_out. */        if (left) {            if (left > len)                left = len;            zmemcpy(s->strm->next_out, s->window + s->block_start, left);            s->strm->next_out += left;            s->strm->avail_out -= left;            s->strm->total_out += left;            s->block_start += left;            len -= left;        }        /* Copy uncompressed bytes directly from next_in to next_out, updating         * the check value.         */        if (len) {            read_buf(s->strm, s->strm->next_out, len);            s->strm->next_out += len;            s->strm->avail_out -= len;            s->strm->total_out += len;        }    } while (last == 0);    /* Update the sliding window with the last s->w_size bytes of the copied     * data, or append all of the copied data to the existing window if less     * than s->w_size bytes were copied. Also update the number of bytes to     * insert in the hash tables, in the event that deflateParams() switches to     * a non-zero compression level.     */    used -= s->strm->avail_in;      /* number of input bytes directly copied */    if (used) {        /* If any input was used, then no unused input remains in the window,         * therefore s->block_start == s->strstart.         */        if (used >= s->w_size) {    /* supplant the previous history */            s->matches = 2;         /* clear hash */            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);            s->strstart = s->w_size;            s->insert = s->strstart;        }        else {            if (s->window_size - s->strstart <= used) {                /* Slide the window down. */                s->strstart -= s->w_size;                zmemcpy(s->window, s->window + s->w_size, s->strstart);                if (s->matches < 2)                    s->matches++;   /* add a pending slide_hash() */                if (s->insert > s->strstart)                    s->insert = s->strstart;            }            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);            s->strstart += used;            s->insert += MIN(used, s->w_size - s->insert);        }        s->block_start = s->strstart;    }    if (s->high_water < s->strstart)        s->high_water = s->strstart;    /* If the last block was written to next_out, then done. */    if (last)        return finish_done;    /* If flushing and all input has been consumed, then done. */    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)        return block_done;    /* Fill the window with any remaining input. */    have = s->window_size - s->strstart;    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {        /* Slide the window down. */        s->block_start -= s->w_size;        s->strstart -= s->w_size;        zmemcpy(s->window, s->window + s->w_size, s->strstart);        if (s->matches < 2)            s->matches++;           /* add a pending slide_hash() */        have += s->w_size;          /* more space now */        if (s->insert > s->strstart)            s->insert = s->strstart;    }    if (have > s->strm->avail_in)        have = s->strm->avail_in;    if (have) {        read_buf(s->strm, s->window + s->strstart, have);        s->strstart += have;        s->insert += MIN(have, s->w_size - s->insert);    }    if (s->high_water < s->strstart)        s->high_water = s->strstart;    /* There was not enough avail_out to write a complete worthy or flushed     * stored block to next_out. Write a stored block to pending instead, if we     * have enough input for a worthy block, or if flushing and there is enough     * room for the remaining input as a stored block in the pending buffer.     */    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */        /* maximum stored block length that will fit in pending: */    have = MIN(s->pending_buf_size - have, MAX_STORED);    min_block = MIN(have, s->w_size);    left = s->strstart - s->block_start;    if (left >= min_block ||        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&         s->strm->avail_in == 0 && left <= have)) {        len = MIN(left, have);        last = flush == Z_FINISH && s->strm->avail_in == 0 &&               len == left ? 1 : 0;        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);        s->block_start += len;        flush_pending(s->strm);    }    /* We've done all we can with the available input and output. */    return last ? finish_started : need_more;}/* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */local block_state deflate_fast(deflate_state *s, int flush) {    IPos hash_head;       /* head of the hash chain */    int bflush;           /* set if current block must be flushed */    for (;;) {        /* Make sure that we always have enough lookahead, except         * at the end of the input file. We need MAX_MATCH bytes         * for the next match, plus MIN_MATCH bytes to insert the         * string following the next match.         */        if (s->lookahead < MIN_LOOKAHEAD) {            fill_window(s);            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {                return need_more;            }            if (s->lookahead == 0) break; /* flush the current block */        }        /* Insert the string window[strstart .. strstart + 2] in the         * dictionary, and set hash_head to the head of the hash chain:         */        hash_head = NIL;        if (s->lookahead >= MIN_MATCH) {            INSERT_STRING(s, s->strstart, hash_head);        }        /* Find the longest match, discarding those <= prev_length.         * At this point we have always match_length < MIN_MATCH         */        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {            /* To simplify the code, we prevent matches with the string             * of window index 0 (in particular we have to avoid a match             * of the string with itself at the start of the input file).             */            s->match_length = longest_match (s, hash_head);            /* longest_match() sets match_start */        }        if (s->match_length >= MIN_MATCH) {            check_match(s, s->strstart, s->match_start, s->match_length);            _tr_tally_dist(s, s->strstart - s->match_start,                           s->match_length - MIN_MATCH, bflush);            s->lookahead -= s->match_length;            /* Insert new strings in the hash table only if the match length             * is not too large. This saves time but degrades compression.             */#ifndef FASTEST            if (s->match_length <= s->max_insert_length &&                s->lookahead >= MIN_MATCH) {                s->match_length--; /* string at strstart already in table */                do {                    s->strstart++;                    INSERT_STRING(s, s->strstart, hash_head);                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are                     * always MIN_MATCH bytes ahead.                     */                } while (--s->match_length != 0);                s->strstart++;            } else#endif            {                s->strstart += s->match_length;                s->match_length = 0;                s->ins_h = s->window[s->strstart];                UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);#if MIN_MATCH != 3                Call UPDATE_HASH() MIN_MATCH-3 more times#endif                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not                 * matter since it will be recomputed at next deflate call.                 */            }        } else {            /* No match, output a literal byte */            Tracevv((stderr,"%c", s->window[s->strstart]));            _tr_tally_lit(s, s->window[s->strstart], bflush);            s->lookahead--;            s->strstart++;        }        if (bflush) FLUSH_BLOCK(s, 0);    }    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;    if (flush == Z_FINISH) {        FLUSH_BLOCK(s, 1);        return finish_done;    }    if (s->sym_next)        FLUSH_BLOCK(s, 0);    return block_done;}#ifndef FASTEST/* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */local block_state deflate_slow(deflate_state *s, int flush) {    IPos hash_head;          /* head of hash chain */    int bflush;              /* set if current block must be flushed */    /* Process the input block. */    for (;;) {        /* Make sure that we always have enough lookahead, except         * at the end of the input file. We need MAX_MATCH bytes         * for the next match, plus MIN_MATCH bytes to insert the         * string following the next match.         */        if (s->lookahead < MIN_LOOKAHEAD) {            fill_window(s);            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {                return need_more;            }            if (s->lookahead == 0) break; /* flush the current block */        }        /* Insert the string window[strstart .. strstart + 2] in the         * dictionary, and set hash_head to the head of the hash chain:         */        hash_head = NIL;        if (s->lookahead >= MIN_MATCH) {            INSERT_STRING(s, s->strstart, hash_head);        }        /* Find the longest match, discarding those <= prev_length.         */        s->prev_length = s->match_length, s->prev_match = s->match_start;        s->match_length = MIN_MATCH-1;        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&            s->strstart - hash_head <= MAX_DIST(s)) {            /* To simplify the code, we prevent matches with the string             * of window index 0 (in particular we have to avoid a match             * of the string with itself at the start of the input file).             */            s->match_length = longest_match (s, hash_head);            /* longest_match() sets match_start */            if (s->match_length <= 5 && (s->strategy == Z_FILTERED#if TOO_FAR <= 32767                || (s->match_length == MIN_MATCH &&                    s->strstart - s->match_start > TOO_FAR)#endif                )) {                /* If prev_match is also MIN_MATCH, match_start is garbage                 * but we will ignore the current match anyway.                 */                s->match_length = MIN_MATCH-1;            }        }        /* If there was a match at the previous step and the current         * match is not better, output the previous match:         */        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;            /* Do not insert strings in hash table beyond this. */            check_match(s, s->strstart - 1, s->prev_match, s->prev_length);            _tr_tally_dist(s, s->strstart - 1 - s->prev_match,                           s->prev_length - MIN_MATCH, bflush);            /* Insert in hash table all strings up to the end of the match.             * strstart - 1 and strstart are already inserted. If there is not             * enough lookahead, the last two strings are not inserted in             * the hash table.             */            s->lookahead -= s->prev_length - 1;            s->prev_length -= 2;            do {                if (++s->strstart <= max_insert) {                    INSERT_STRING(s, s->strstart, hash_head);                }            } while (--s->prev_length != 0);            s->match_available = 0;            s->match_length = MIN_MATCH-1;            s->strstart++;            if (bflush) FLUSH_BLOCK(s, 0);        } else if (s->match_available) {            /* If there was no match at the previous position, output a             * single literal. If there was a match but the current match             * is longer, truncate the previous match to a single literal.             */            Tracevv((stderr,"%c", s->window[s->strstart - 1]));            _tr_tally_lit(s, s->window[s->strstart - 1], bflush);            if (bflush) {                FLUSH_BLOCK_ONLY(s, 0);            }            s->strstart++;            s->lookahead--;            if (s->strm->avail_out == 0) return need_more;        } else {            /* There is no previous match to compare with, wait for             * the next step to decide.             */            s->match_available = 1;            s->strstart++;            s->lookahead--;        }    }    Assert (flush != Z_NO_FLUSH, "no flush?");    if (s->match_available) {        Tracevv((stderr,"%c", s->window[s->strstart - 1]));        _tr_tally_lit(s, s->window[s->strstart - 1], bflush);        s->match_available = 0;    }    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;    if (flush == Z_FINISH) {        FLUSH_BLOCK(s, 1);        return finish_done;    }    if (s->sym_next)        FLUSH_BLOCK(s, 0);    return block_done;}#endif /* FASTEST *//* =========================================================================== * For Z_RLE, simply look for runs of bytes, generate matches only of distance * one.  Do not maintain a hash table.  (It will be regenerated if this run of * deflate switches away from Z_RLE.) */local block_state deflate_rle(deflate_state *s, int flush) {    int bflush;             /* set if current block must be flushed */    uInt prev;              /* byte at distance one to match */    Bytef *scan, *strend;   /* scan goes up to strend for length of run */    for (;;) {        /* Make sure that we always have enough lookahead, except         * at the end of the input file. We need MAX_MATCH bytes         * for the longest run, plus one for the unrolled loop.         */        if (s->lookahead <= MAX_MATCH) {            fill_window(s);            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {                return need_more;            }            if (s->lookahead == 0) break; /* flush the current block */        }        /* See how many times the previous byte repeats */        s->match_length = 0;        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {            scan = s->window + s->strstart - 1;            prev = *scan;            if (prev == *++scan && prev == *++scan && prev == *++scan) {                strend = s->window + s->strstart + MAX_MATCH;                do {                } while (prev == *++scan && prev == *++scan &&                         prev == *++scan && prev == *++scan &&                         prev == *++scan && prev == *++scan &&                         prev == *++scan && prev == *++scan &&                         scan < strend);                s->match_length = MAX_MATCH - (uInt)(strend - scan);                if (s->match_length > s->lookahead)                    s->match_length = s->lookahead;            }            Assert(scan <= s->window + (uInt)(s->window_size - 1),                   "wild scan");        }        /* Emit match if have run of MIN_MATCH or longer, else emit literal */        if (s->match_length >= MIN_MATCH) {            check_match(s, s->strstart, s->strstart - 1, s->match_length);            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);            s->lookahead -= s->match_length;            s->strstart += s->match_length;            s->match_length = 0;        } else {            /* No match, output a literal byte */            Tracevv((stderr,"%c", s->window[s->strstart]));            _tr_tally_lit(s, s->window[s->strstart], bflush);            s->lookahead--;            s->strstart++;        }        if (bflush) FLUSH_BLOCK(s, 0);    }    s->insert = 0;    if (flush == Z_FINISH) {        FLUSH_BLOCK(s, 1);        return finish_done;    }    if (s->sym_next)        FLUSH_BLOCK(s, 0);    return block_done;}/* =========================================================================== * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table. * (It will be regenerated if this run of deflate switches away from Huffman.) */local block_state deflate_huff(deflate_state *s, int flush) {    int bflush;             /* set if current block must be flushed */    for (;;) {        /* Make sure that we have a literal to write. */        if (s->lookahead == 0) {            fill_window(s);            if (s->lookahead == 0) {                if (flush == Z_NO_FLUSH)                    return need_more;                break;      /* flush the current block */            }        }        /* Output a literal byte */        s->match_length = 0;        Tracevv((stderr,"%c", s->window[s->strstart]));        _tr_tally_lit(s, s->window[s->strstart], bflush);        s->lookahead--;        s->strstart++;        if (bflush) FLUSH_BLOCK(s, 0);    }    s->insert = 0;    if (flush == Z_FINISH) {        FLUSH_BLOCK(s, 1);        return finish_done;    }    if (s->sym_next)        FLUSH_BLOCK(s, 0);    return block_done;}
 |