| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024 | /**  xxHash - Fast Hash algorithm*  Copyright (C) 2012-2016, Yann Collet**  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)**  Redistribution and use in source and binary forms, with or without*  modification, are permitted provided that the following conditions are*  met:**  * Redistributions of source code must retain the above copyright*  notice, this list of conditions and the following disclaimer.*  * Redistributions in binary form must reproduce the above*  copyright notice, this list of conditions and the following disclaimer*  in the documentation and/or other materials provided with the*  distribution.**  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR*  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT*  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT*  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,*  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY*  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT*  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE*  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.**  You can contact the author at :*  - xxHash homepage: http://www.xxhash.com*  - xxHash source repository : https://github.com/Cyan4973/xxHash*//* **************************************  Tuning parameters***************************************//*!XXH_FORCE_MEMORY_ACCESS : * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. * The below switch allow to select different access method for improved performance. * Method 0 (default) : use `memcpy()`. Safe and portable. * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. * Method 2 : direct access. This method doesn't depend on compiler but violate C standard. *            It can generate buggy code on targets which do not support unaligned memory accesses. *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) * See http://stackoverflow.com/a/32095106/646947 for details. * Prefer these methods in priority order (0 > 1 > 2) */#ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */#  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \                        || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \                        || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )#    define XXH_FORCE_MEMORY_ACCESS 2#  elif (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \  (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) \                    || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) \                    || defined(__ARM_ARCH_7S__) ))#    define XXH_FORCE_MEMORY_ACCESS 1#  endif#endif/*!XXH_ACCEPT_NULL_INPUT_POINTER : * If input pointer is NULL, xxHash default behavior is to dereference it, triggering a segfault. * When this macro is enabled, xxHash actively checks input for null pointer. * It it is, result for null input pointers is the same as a null-length input. */#ifndef XXH_ACCEPT_NULL_INPUT_POINTER   /* can be defined externally */#  define XXH_ACCEPT_NULL_INPUT_POINTER 0#endif/*!XXH_FORCE_ALIGN_CHECK : * This is a minor performance trick, only useful with lots of very small keys. * It means : check for aligned/unaligned input. * The check costs one initial branch per hash; * set it to 0 when the input is guaranteed to be aligned, * or when alignment doesn't matter for performance. */#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */#  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)#    define XXH_FORCE_ALIGN_CHECK 0#  else#    define XXH_FORCE_ALIGN_CHECK 1#  endif#endif/* **************************************  Includes & Memory related functions***************************************//*! Modify the local functions below should you wish to use some other memory routines*   for malloc(), free() */#include <stdlib.h>static void* XXH_malloc(size_t s) { return malloc(s); }static void  XXH_free  (void* p)  { free(p); }/*! and for memcpy() */#include <string.h>static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }#include <assert.h>   /* assert */#define XXH_STATIC_LINKING_ONLY#include "xxhash.h"/* **************************************  Compiler Specific Options***************************************/#ifdef _MSC_VER    /* Visual Studio */#  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */#  define XXH_FORCE_INLINE static __forceinline#  define XXH_NO_INLINE static __declspec(noinline)#else#  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */#    ifdef __GNUC__#      define XXH_FORCE_INLINE static inline __attribute__((always_inline))#      define XXH_NO_INLINE static __attribute__((noinline))#    else#      define XXH_FORCE_INLINE static inline#      define XXH_NO_INLINE static#    endif#  else#    define XXH_FORCE_INLINE static#    define XXH_NO_INLINE static#  endif /* __STDC_VERSION__ */#endif/* **************************************  Basic Types***************************************/#ifndef MEM_MODULE# if !defined (__VMS) \  && (defined (__cplusplus) \  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )#   include <stdint.h>    typedef uint8_t  BYTE;    typedef uint16_t U16;    typedef uint32_t U32;# else    typedef unsigned char      BYTE;    typedef unsigned short     U16;    typedef unsigned int       U32;# endif#endif/* ===   Memory access   === */#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers *//* currently only defined for gcc and icc */typedef union { U32 u32; } __attribute__((packed)) unalign;static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }#else/* portable and safe solution. Generally efficient. * see : http://stackoverflow.com/a/32095106/646947 */static U32 XXH_read32(const void* memPtr){    U32 val;    memcpy(&val, memPtr, sizeof(val));    return val;}#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS *//* ===   Endianess   === */typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */#ifndef XXH_CPU_LITTLE_ENDIANstatic int XXH_isLittleEndian(void){    const union { U32 u; BYTE c[4]; } one = { 1 };   /* don't use static : performance detrimental  */    return one.c[0];}#   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian()#endif/* *****************************************  Compiler-specific Functions and Macros******************************************/#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */#if defined(_MSC_VER)#  define XXH_rotl32(x,r) _rotl(x,r)#  define XXH_rotl64(x,r) _rotl64(x,r)#else#  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))#  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))#endif#if defined(_MSC_VER)     /* Visual Studio */#  define XXH_swap32 _byteswap_ulong#elif XXH_GCC_VERSION >= 403#  define XXH_swap32 __builtin_bswap32#elsestatic U32 XXH_swap32 (U32 x){    return  ((x << 24) & 0xff000000 ) |            ((x <<  8) & 0x00ff0000 ) |            ((x >>  8) & 0x0000ff00 ) |            ((x >> 24) & 0x000000ff );}#endif/* ****************************  Memory reads*****************************/typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;XXH_FORCE_INLINE U32 XXH_readLE32(const void* ptr){    return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));}static U32 XXH_readBE32(const void* ptr){    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);}XXH_FORCE_INLINE U32XXH_readLE32_align(const void* ptr, XXH_alignment align){    if (align==XXH_unaligned) {        return XXH_readLE32(ptr);    } else {        return XXH_CPU_LITTLE_ENDIAN ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);    }}/* **************************************  Macros***************************************/#define XXH_STATIC_ASSERT(c)  { enum { XXH_sa = 1/(int)(!!(c)) }; }  /* use after variable declarations */XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }/* ********************************************************************  32-bit hash functions*********************************************************************/static const U32 PRIME32_1 = 2654435761U;   /* 0b10011110001101110111100110110001 */static const U32 PRIME32_2 = 2246822519U;   /* 0b10000101111010111100101001110111 */static const U32 PRIME32_3 = 3266489917U;   /* 0b11000010101100101010111000111101 */static const U32 PRIME32_4 =  668265263U;   /* 0b00100111110101001110101100101111 */static const U32 PRIME32_5 =  374761393U;   /* 0b00010110010101100110011110110001 */static U32 XXH32_round(U32 acc, U32 input){    acc += input * PRIME32_2;    acc  = XXH_rotl32(acc, 13);    acc *= PRIME32_1;#if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE)    /* UGLY HACK:     * This inline assembly hack forces acc into a normal register. This is the     * only thing that prevents GCC and Clang from autovectorizing the XXH32 loop     * (pragmas and attributes don't work for some resason) without globally     * disabling SSE4.1.     *     * The reason we want to avoid vectorization is because despite working on     * 4 integers at a time, there are multiple factors slowing XXH32 down on     * SSE4:     * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on newer chips!)     *   making it slightly slower to multiply four integers at once compared to four     *   integers independently. Even when pmulld was fastest, Sandy/Ivy Bridge, it is     *   still not worth it to go into SSE just to multiply unless doing a long operation.     *     * - Four instructions are required to rotate,     *      movqda tmp,  v // not required with VEX encoding     *      pslld  tmp, 13 // tmp <<= 13     *      psrld  v,   19 // x >>= 19     *      por    v,  tmp // x |= tmp     *   compared to one for scalar:     *      roll   v, 13    // reliably fast across the board     *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason     *     * - Instruction level parallelism is actually more beneficial here because the     *   SIMD actually serializes this operation: While v1 is rotating, v2 can load data,     *   while v3 can multiply. SSE forces them to operate together.     *     * How this hack works:     * __asm__(""       // Declare an assembly block but don't declare any instructions     *          :       // However, as an Input/Output Operand,     *          "+r"    // constrain a read/write operand (+) as a general purpose register (r).     *          (acc)   // and set acc as the operand     * );     *     * Because of the 'r', the compiler has promised that seed will be in a     * general purpose register and the '+' says that it will be 'read/write',     * so it has to assume it has changed. It is like volatile without all the     * loads and stores.     *     * Since the argument has to be in a normal register (not an SSE register),     * each time XXH32_round is called, it is impossible to vectorize. */    __asm__("" : "+r" (acc));#endif    return acc;}/* mix all bits */static U32 XXH32_avalanche(U32 h32){    h32 ^= h32 >> 15;    h32 *= PRIME32_2;    h32 ^= h32 >> 13;    h32 *= PRIME32_3;    h32 ^= h32 >> 16;    return(h32);}#define XXH_get32bits(p) XXH_readLE32_align(p, align)static U32XXH32_finalize(U32 h32, const void* ptr, size_t len, XXH_alignment align){    const BYTE* p = (const BYTE*)ptr;#define PROCESS1               \    h32 += (*p++) * PRIME32_5; \    h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;#define PROCESS4                         \    h32 += XXH_get32bits(p) * PRIME32_3; \    p+=4;                                \    h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;    switch(len&15)  /* or switch(bEnd - p) */    {      case 12:      PROCESS4;                    /* fallthrough */      case 8:       PROCESS4;                    /* fallthrough */      case 4:       PROCESS4;                    return XXH32_avalanche(h32);      case 13:      PROCESS4;                    /* fallthrough */      case 9:       PROCESS4;                    /* fallthrough */      case 5:       PROCESS4;                    PROCESS1;                    return XXH32_avalanche(h32);      case 14:      PROCESS4;                    /* fallthrough */      case 10:      PROCESS4;                    /* fallthrough */      case 6:       PROCESS4;                    PROCESS1;                    PROCESS1;                    return XXH32_avalanche(h32);      case 15:      PROCESS4;                    /* fallthrough */      case 11:      PROCESS4;                    /* fallthrough */      case 7:       PROCESS4;                    /* fallthrough */      case 3:       PROCESS1;                    /* fallthrough */      case 2:       PROCESS1;                    /* fallthrough */      case 1:       PROCESS1;                    /* fallthrough */      case 0:       return XXH32_avalanche(h32);    }    assert(0);    return h32;   /* reaching this point is deemed impossible */}XXH_FORCE_INLINE U32XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_alignment align){    const BYTE* p = (const BYTE*)input;    const BYTE* bEnd = p + len;    U32 h32;#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)    if (p==NULL) {        len=0;        bEnd=p=(const BYTE*)(size_t)16;    }#endif    if (len>=16) {        const BYTE* const limit = bEnd - 15;        U32 v1 = seed + PRIME32_1 + PRIME32_2;        U32 v2 = seed + PRIME32_2;        U32 v3 = seed + 0;        U32 v4 = seed - PRIME32_1;        do {            v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;            v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;            v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;            v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;        } while (p < limit);        h32 = XXH_rotl32(v1, 1)  + XXH_rotl32(v2, 7)            + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);    } else {        h32  = seed + PRIME32_5;    }    h32 += (U32)len;    return XXH32_finalize(h32, p, len&15, align);}XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed){#if 0    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */    XXH32_state_t state;    XXH32_reset(&state, seed);    XXH32_update(&state, input, len);    return XXH32_digest(&state);#else    if (XXH_FORCE_ALIGN_CHECK) {        if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */            return XXH32_endian_align(input, len, seed, XXH_aligned);    }   }    return XXH32_endian_align(input, len, seed, XXH_unaligned);#endif}/*======   Hash streaming   ======*/XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void){    return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));}XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr){    XXH_free(statePtr);    return XXH_OK;}XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState){    memcpy(dstState, srcState, sizeof(*dstState));}XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed){    XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */    memset(&state, 0, sizeof(state));    state.v1 = seed + PRIME32_1 + PRIME32_2;    state.v2 = seed + PRIME32_2;    state.v3 = seed + 0;    state.v4 = seed - PRIME32_1;    /* do not write into reserved, planned to be removed in a future version */    memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));    return XXH_OK;}XXH_PUBLIC_API XXH_errorcodeXXH32_update(XXH32_state_t* state, const void* input, size_t len){    if (input==NULL)#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)        return XXH_OK;#else        return XXH_ERROR;#endif    {   const BYTE* p = (const BYTE*)input;        const BYTE* const bEnd = p + len;        state->total_len_32 += (XXH32_hash_t)len;        state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));        if (state->memsize + len < 16)  {   /* fill in tmp buffer */            XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);            state->memsize += (XXH32_hash_t)len;            return XXH_OK;        }        if (state->memsize) {   /* some data left from previous update */            XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);            {   const U32* p32 = state->mem32;                state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++;                state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++;                state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++;                state->v4 = XXH32_round(state->v4, XXH_readLE32(p32));            }            p += 16-state->memsize;            state->memsize = 0;        }        if (p <= bEnd-16) {            const BYTE* const limit = bEnd - 16;            U32 v1 = state->v1;            U32 v2 = state->v2;            U32 v3 = state->v3;            U32 v4 = state->v4;            do {                v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4;                v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4;                v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4;                v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4;            } while (p<=limit);            state->v1 = v1;            state->v2 = v2;            state->v3 = v3;            state->v4 = v4;        }        if (p < bEnd) {            XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));            state->memsize = (unsigned)(bEnd-p);        }    }    return XXH_OK;}XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state){    U32 h32;    if (state->large_len) {        h32 = XXH_rotl32(state->v1, 1)            + XXH_rotl32(state->v2, 7)            + XXH_rotl32(state->v3, 12)            + XXH_rotl32(state->v4, 18);    } else {        h32 = state->v3 /* == seed */ + PRIME32_5;    }    h32 += state->total_len_32;    return XXH32_finalize(h32, state->mem32, state->memsize, XXH_aligned);}/*======   Canonical representation   ======*//*! Default XXH result types are basic unsigned 32 and 64 bits.*   The canonical representation follows human-readable write convention, aka big-endian (large digits first).*   These functions allow transformation of hash result into and from its canonical format.*   This way, hash values can be written into a file or buffer, remaining comparable across different systems.*/XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash){    XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);    memcpy(dst, &hash, sizeof(*dst));}XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src){    return XXH_readBE32(src);}#ifndef XXH_NO_LONG_LONG/* ********************************************************************  64-bit hash functions*********************************************************************//*======   Memory access   ======*/#ifndef MEM_MODULE# define MEM_MODULE# if !defined (__VMS) \  && (defined (__cplusplus) \  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )#   include <stdint.h>    typedef uint64_t U64;# else    /* if compiler doesn't support unsigned long long, replace by another 64-bit type */    typedef unsigned long long U64;# endif#endif#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers *//* currently only defined for gcc and icc */typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64;static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }#else/* portable and safe solution. Generally efficient. * see : http://stackoverflow.com/a/32095106/646947 */static U64 XXH_read64(const void* memPtr){    U64 val;    memcpy(&val, memPtr, sizeof(val));    return val;}#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */#if defined(_MSC_VER)     /* Visual Studio */#  define XXH_swap64 _byteswap_uint64#elif XXH_GCC_VERSION >= 403#  define XXH_swap64 __builtin_bswap64#elsestatic U64 XXH_swap64 (U64 x){    return  ((x << 56) & 0xff00000000000000ULL) |            ((x << 40) & 0x00ff000000000000ULL) |            ((x << 24) & 0x0000ff0000000000ULL) |            ((x << 8)  & 0x000000ff00000000ULL) |            ((x >> 8)  & 0x00000000ff000000ULL) |            ((x >> 24) & 0x0000000000ff0000ULL) |            ((x >> 40) & 0x000000000000ff00ULL) |            ((x >> 56) & 0x00000000000000ffULL);}#endifXXH_FORCE_INLINE U64 XXH_readLE64(const void* ptr){    return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));}static U64 XXH_readBE64(const void* ptr){    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);}XXH_FORCE_INLINE U64XXH_readLE64_align(const void* ptr, XXH_alignment align){    if (align==XXH_unaligned)        return XXH_readLE64(ptr);    else        return XXH_CPU_LITTLE_ENDIAN ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);}/*======   xxh64   ======*/static const U64 PRIME64_1 = 11400714785074694791ULL;   /* 0b1001111000110111011110011011000110000101111010111100101010000111 */static const U64 PRIME64_2 = 14029467366897019727ULL;   /* 0b1100001010110010101011100011110100100111110101001110101101001111 */static const U64 PRIME64_3 =  1609587929392839161ULL;   /* 0b0001011001010110011001111011000110011110001101110111100111111001 */static const U64 PRIME64_4 =  9650029242287828579ULL;   /* 0b1000010111101011110010100111011111000010101100101010111001100011 */static const U64 PRIME64_5 =  2870177450012600261ULL;   /* 0b0010011111010100111010110010111100010110010101100110011111000101 */static U64 XXH64_round(U64 acc, U64 input){    acc += input * PRIME64_2;    acc  = XXH_rotl64(acc, 31);    acc *= PRIME64_1;    return acc;}static U64 XXH64_mergeRound(U64 acc, U64 val){    val  = XXH64_round(0, val);    acc ^= val;    acc  = acc * PRIME64_1 + PRIME64_4;    return acc;}static U64 XXH64_avalanche(U64 h64){    h64 ^= h64 >> 33;    h64 *= PRIME64_2;    h64 ^= h64 >> 29;    h64 *= PRIME64_3;    h64 ^= h64 >> 32;    return h64;}#define XXH_get64bits(p) XXH_readLE64_align(p, align)static U64XXH64_finalize(U64 h64, const void* ptr, size_t len, XXH_alignment align){    const BYTE* p = (const BYTE*)ptr;#define PROCESS1_64            \    h64 ^= (*p++) * PRIME64_5; \    h64 = XXH_rotl64(h64, 11) * PRIME64_1;#define PROCESS4_64          \    h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; \    p+=4;                    \    h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;#define PROCESS8_64 {        \    U64 const k1 = XXH64_round(0, XXH_get64bits(p)); \    p+=8;                    \    h64 ^= k1;               \    h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; \}    switch(len&31) {      case 24: PROCESS8_64;                    /* fallthrough */      case 16: PROCESS8_64;                    /* fallthrough */      case  8: PROCESS8_64;               return XXH64_avalanche(h64);      case 28: PROCESS8_64;                    /* fallthrough */      case 20: PROCESS8_64;                    /* fallthrough */      case 12: PROCESS8_64;                    /* fallthrough */      case  4: PROCESS4_64;               return XXH64_avalanche(h64);      case 25: PROCESS8_64;                    /* fallthrough */      case 17: PROCESS8_64;                    /* fallthrough */      case  9: PROCESS8_64;               PROCESS1_64;               return XXH64_avalanche(h64);      case 29: PROCESS8_64;                    /* fallthrough */      case 21: PROCESS8_64;                    /* fallthrough */      case 13: PROCESS8_64;                    /* fallthrough */      case  5: PROCESS4_64;               PROCESS1_64;               return XXH64_avalanche(h64);      case 26: PROCESS8_64;                    /* fallthrough */      case 18: PROCESS8_64;                    /* fallthrough */      case 10: PROCESS8_64;               PROCESS1_64;               PROCESS1_64;               return XXH64_avalanche(h64);      case 30: PROCESS8_64;                    /* fallthrough */      case 22: PROCESS8_64;                    /* fallthrough */      case 14: PROCESS8_64;                    /* fallthrough */      case  6: PROCESS4_64;               PROCESS1_64;               PROCESS1_64;               return XXH64_avalanche(h64);      case 27: PROCESS8_64;                    /* fallthrough */      case 19: PROCESS8_64;                    /* fallthrough */      case 11: PROCESS8_64;               PROCESS1_64;               PROCESS1_64;               PROCESS1_64;               return XXH64_avalanche(h64);      case 31: PROCESS8_64;                    /* fallthrough */      case 23: PROCESS8_64;                    /* fallthrough */      case 15: PROCESS8_64;                    /* fallthrough */      case  7: PROCESS4_64;                    /* fallthrough */      case  3: PROCESS1_64;                    /* fallthrough */      case  2: PROCESS1_64;                    /* fallthrough */      case  1: PROCESS1_64;                    /* fallthrough */      case  0: return XXH64_avalanche(h64);    }    /* impossible to reach */    assert(0);    return 0;  /* unreachable, but some compilers complain without it */}XXH_FORCE_INLINE U64XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_alignment align){    const BYTE* p = (const BYTE*)input;    const BYTE* bEnd = p + len;    U64 h64;#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)    if (p==NULL) {        len=0;        bEnd=p=(const BYTE*)(size_t)32;    }#endif    if (len>=32) {        const BYTE* const limit = bEnd - 32;        U64 v1 = seed + PRIME64_1 + PRIME64_2;        U64 v2 = seed + PRIME64_2;        U64 v3 = seed + 0;        U64 v4 = seed - PRIME64_1;        do {            v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;            v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;            v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;            v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;        } while (p<=limit);        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);        h64 = XXH64_mergeRound(h64, v1);        h64 = XXH64_mergeRound(h64, v2);        h64 = XXH64_mergeRound(h64, v3);        h64 = XXH64_mergeRound(h64, v4);    } else {        h64  = seed + PRIME64_5;    }    h64 += (U64) len;    return XXH64_finalize(h64, p, len, align);}XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed){#if 0    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */    XXH64_state_t state;    XXH64_reset(&state, seed);    XXH64_update(&state, input, len);    return XXH64_digest(&state);#else    if (XXH_FORCE_ALIGN_CHECK) {        if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */            return XXH64_endian_align(input, len, seed, XXH_aligned);    }   }    return XXH64_endian_align(input, len, seed, XXH_unaligned);#endif}/*======   Hash Streaming   ======*/XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void){    return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));}XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr){    XXH_free(statePtr);    return XXH_OK;}XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState){    memcpy(dstState, srcState, sizeof(*dstState));}XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed){    XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */    memset(&state, 0, sizeof(state));    state.v1 = seed + PRIME64_1 + PRIME64_2;    state.v2 = seed + PRIME64_2;    state.v3 = seed + 0;    state.v4 = seed - PRIME64_1;     /* do not write into reserved, planned to be removed in a future version */    memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));    return XXH_OK;}XXH_PUBLIC_API XXH_errorcodeXXH64_update (XXH64_state_t* state, const void* input, size_t len){    if (input==NULL)#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)        return XXH_OK;#else        return XXH_ERROR;#endif    {   const BYTE* p = (const BYTE*)input;        const BYTE* const bEnd = p + len;        state->total_len += len;        if (state->memsize + len < 32) {  /* fill in tmp buffer */            XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);            state->memsize += (U32)len;            return XXH_OK;        }        if (state->memsize) {   /* tmp buffer is full */            XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);            state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0));            state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1));            state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2));            state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3));            p += 32-state->memsize;            state->memsize = 0;        }        if (p+32 <= bEnd) {            const BYTE* const limit = bEnd - 32;            U64 v1 = state->v1;            U64 v2 = state->v2;            U64 v3 = state->v3;            U64 v4 = state->v4;            do {                v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8;                v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8;                v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8;                v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8;            } while (p<=limit);            state->v1 = v1;            state->v2 = v2;            state->v3 = v3;            state->v4 = v4;        }        if (p < bEnd) {            XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));            state->memsize = (unsigned)(bEnd-p);        }    }    return XXH_OK;}XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state){    U64 h64;    if (state->total_len >= 32) {        U64 const v1 = state->v1;        U64 const v2 = state->v2;        U64 const v3 = state->v3;        U64 const v4 = state->v4;        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);        h64 = XXH64_mergeRound(h64, v1);        h64 = XXH64_mergeRound(h64, v2);        h64 = XXH64_mergeRound(h64, v3);        h64 = XXH64_mergeRound(h64, v4);    } else {        h64  = state->v3 /*seed*/ + PRIME64_5;    }    h64 += (U64) state->total_len;    return XXH64_finalize(h64, state->mem64, (size_t)state->total_len, XXH_aligned);}/*====== Canonical representation   ======*/XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash){    XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);    memcpy(dst, &hash, sizeof(*dst));}XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src){    return XXH_readBE64(src);}/* **********************************************************************  XXH3*  New generation hash designed for speed on small keys and vectorization************************************************************************ */#include "xxh3.h"#endif  /* XXH_NO_LONG_LONG */
 |