123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- using System;
- namespace ICSharpCode.SharpZipLib.Checksum
- {
- /// <summary>
- /// Computes Adler32 checksum for a stream of data. An Adler32
- /// checksum is not as reliable as a CRC32 checksum, but a lot faster to
- /// compute.
- ///
- /// The specification for Adler32 may be found in RFC 1950.
- /// ZLIB Compressed Data Format Specification version 3.3)
- ///
- ///
- /// From that document:
- ///
- /// "ADLER32 (Adler-32 checksum)
- /// This contains a checksum value of the uncompressed data
- /// (excluding any dictionary data) computed according to Adler-32
- /// algorithm. This algorithm is a 32-bit extension and improvement
- /// of the Fletcher algorithm, used in the ITU-T X.224 / ISO 8073
- /// standard.
- ///
- /// Adler-32 is composed of two sums accumulated per byte: s1 is
- /// the sum of all bytes, s2 is the sum of all s1 values. Both sums
- /// are done modulo 65521. s1 is initialized to 1, s2 to zero. The
- /// Adler-32 checksum is stored as s2*65536 + s1 in most-
- /// significant-byte first (network) order."
- ///
- /// "8.2. The Adler-32 algorithm
- ///
- /// The Adler-32 algorithm is much faster than the CRC32 algorithm yet
- /// still provides an extremely low probability of undetected errors.
- ///
- /// The modulo on unsigned long accumulators can be delayed for 5552
- /// bytes, so the modulo operation time is negligible. If the bytes
- /// are a, b, c, the second sum is 3a + 2b + c + 3, and so is position
- /// and order sensitive, unlike the first sum, which is just a
- /// checksum. That 65521 is prime is important to avoid a possible
- /// large class of two-byte errors that leave the check unchanged.
- /// (The Fletcher checksum uses 255, which is not prime and which also
- /// makes the Fletcher check insensitive to single byte changes 0 -
- /// 255.)
- ///
- /// The sum s1 is initialized to 1 instead of zero to make the length
- /// of the sequence part of s2, so that the length does not have to be
- /// checked separately. (Any sequence of zeroes has a Fletcher
- /// checksum of zero.)"
- /// </summary>
- /// <see cref="ICSharpCode.SharpZipLib.Zip.Compression.Streams.InflaterInputStream"/>
- /// <see cref="ICSharpCode.SharpZipLib.Zip.Compression.Streams.DeflaterOutputStream"/>
- public sealed class Adler32 : IChecksum
- {
- #region Instance Fields
- /// <summary>
- /// largest prime smaller than 65536
- /// </summary>
- readonly static uint BASE = 65521;
- /// <summary>
- /// The CRC data checksum so far.
- /// </summary>
- uint checkValue;
- #endregion
- /// <summary>
- /// Initialise a default instance of <see cref="Adler32"></see>
- /// </summary>
- public Adler32()
- {
- Reset();
- }
- /// <summary>
- /// Resets the Adler32 data checksum as if no update was ever called.
- /// </summary>
- public void Reset()
- {
- checkValue = 1;
- }
- /// <summary>
- /// Returns the Adler32 data checksum computed so far.
- /// </summary>
- public long Value {
- get {
- return checkValue;
- }
- }
- /// <summary>
- /// Updates the checksum with the byte b.
- /// </summary>
- /// <param name="bval">
- /// The data value to add. The high byte of the int is ignored.
- /// </param>
- public void Update(int bval)
- {
- // We could make a length 1 byte array and call update again, but I
- // would rather not have that overhead
- uint s1 = checkValue & 0xFFFF;
- uint s2 = checkValue >> 16;
- s1 = (s1 + ((uint)bval & 0xFF)) % BASE;
- s2 = (s1 + s2) % BASE;
- checkValue = (s2 << 16) + s1;
- }
- /// <summary>
- /// Updates the Adler32 data checksum with the bytes taken from
- /// a block of data.
- /// </summary>
- /// <param name="buffer">Contains the data to update the checksum with.</param>
- public void Update(byte[] buffer)
- {
- if (buffer == null) {
- throw new ArgumentNullException("nameof(buffer)");
- }
- Update(buffer, 0, buffer.Length);
- }
- /// <summary>
- /// Update Adler32 data checksum based on a portion of a block of data
- /// </summary>
- /// <param name = "buffer">Contains the data to update the CRC with.</param>
- /// <param name = "offset">The offset into the buffer where the data starts</param>
- /// <param name = "count">The number of data bytes to update the CRC with.</param>
- public void Update(byte[] buffer, int offset, int count)
- {
- if (buffer == null) {
- throw new ArgumentNullException("nameof(buffer)");
- }
- if (offset < 0) {
- throw new ArgumentOutOfRangeException("nameof(offset)", "cannot be less than zero");
- }
- if (offset >= buffer.Length) {
- throw new ArgumentOutOfRangeException("nameof(offset)", "not a valid index into buffer");
- }
- if (count < 0) {
- throw new ArgumentOutOfRangeException("nameof(count)", "cannot be less than zero");
- }
- if (offset + count > buffer.Length) {
- throw new ArgumentOutOfRangeException("nameof(count)", "exceeds buffer size");
- }
- //(By Per Bothner)
- uint s1 = checkValue & 0xFFFF;
- uint s2 = checkValue >> 16;
- while (count > 0) {
- // We can defer the modulo operation:
- // s1 maximally grows from 65521 to 65521 + 255 * 3800
- // s2 maximally grows by 3800 * median(s1) = 2090079800 < 2^31
- int n = 3800;
- if (n > count) {
- n = count;
- }
- count -= n;
- while (--n >= 0) {
- s1 = s1 + (uint)(buffer[offset++] & 0xff);
- s2 = s2 + s1;
- }
- s1 %= BASE;
- s2 %= BASE;
- }
- checkValue = (s2 << 16) | s1;
- }
- }
- }
|