| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 | using System;namespace ICSharpCode.SharpZipLib.Checksum{	/// <summary>	/// Computes Adler32 checksum for a stream of data. An Adler32	/// checksum is not as reliable as a CRC32 checksum, but a lot faster to	/// compute.	///	/// The specification for Adler32 may be found in RFC 1950.	/// ZLIB Compressed Data Format Specification version 3.3)	///	///	/// From that document:	///	///      "ADLER32 (Adler-32 checksum)	///       This contains a checksum value of the uncompressed data	///       (excluding any dictionary data) computed according to Adler-32	///       algorithm. This algorithm is a 32-bit extension and improvement	///       of the Fletcher algorithm, used in the ITU-T X.224 / ISO 8073	///       standard.	///	///       Adler-32 is composed of two sums accumulated per byte: s1 is	///       the sum of all bytes, s2 is the sum of all s1 values. Both sums	///       are done modulo 65521. s1 is initialized to 1, s2 to zero.  The	///       Adler-32 checksum is stored as s2*65536 + s1 in most-	///       significant-byte first (network) order."	///	///  "8.2. The Adler-32 algorithm	///	///    The Adler-32 algorithm is much faster than the CRC32 algorithm yet	///    still provides an extremely low probability of undetected errors.	///	///    The modulo on unsigned long accumulators can be delayed for 5552	///    bytes, so the modulo operation time is negligible.  If the bytes	///    are a, b, c, the second sum is 3a + 2b + c + 3, and so is position	///    and order sensitive, unlike the first sum, which is just a	///    checksum.  That 65521 is prime is important to avoid a possible	///    large class of two-byte errors that leave the check unchanged.	///    (The Fletcher checksum uses 255, which is not prime and which also	///    makes the Fletcher check insensitive to single byte changes 0 -	///    255.)	///	///    The sum s1 is initialized to 1 instead of zero to make the length	///    of the sequence part of s2, so that the length does not have to be	///    checked separately. (Any sequence of zeroes has a Fletcher	///    checksum of zero.)"	/// </summary>	/// <see cref="ICSharpCode.SharpZipLib.Zip.Compression.Streams.InflaterInputStream"/>	/// <see cref="ICSharpCode.SharpZipLib.Zip.Compression.Streams.DeflaterOutputStream"/>	public sealed class Adler32 : IChecksum	{		#region Instance Fields		/// <summary>		/// largest prime smaller than 65536		/// </summary>		readonly static uint BASE = 65521;		/// <summary>		/// The CRC data checksum so far.		/// </summary>		uint checkValue;		#endregion		/// <summary>		/// Initialise a default instance of <see cref="Adler32"></see>		/// </summary>		public Adler32()		{			Reset();		}		/// <summary>		/// Resets the Adler32 data checksum as if no update was ever called.		/// </summary>		public void Reset()		{			checkValue = 1;		}		/// <summary>		/// Returns the Adler32 data checksum computed so far.		/// </summary>		public long Value {			get {				return checkValue;			}		}		/// <summary>		/// Updates the checksum with the byte b.		/// </summary>		/// <param name="bval">		/// The data value to add. The high byte of the int is ignored.		/// </param>		public void Update(int bval)		{			// We could make a length 1 byte array and call update again, but I			// would rather not have that overhead			uint s1 = checkValue & 0xFFFF;			uint s2 = checkValue >> 16;			s1 = (s1 + ((uint)bval & 0xFF)) % BASE;			s2 = (s1 + s2) % BASE;			checkValue = (s2 << 16) + s1;		}		/// <summary>		/// Updates the Adler32 data checksum with the bytes taken from		/// a block of data.		/// </summary>		/// <param name="buffer">Contains the data to update the checksum with.</param>		public void Update(byte[] buffer)		{			if (buffer == null) {				throw new ArgumentNullException("nameof(buffer)");			}			Update(buffer, 0, buffer.Length);		}		/// <summary>		/// Update Adler32 data checksum based on a portion of a block of data		/// </summary>		/// <param name = "buffer">Contains the data to update the CRC with.</param>		/// <param name = "offset">The offset into the buffer where the data starts</param>		/// <param name = "count">The number of data bytes to update the CRC with.</param>		public void Update(byte[] buffer, int offset, int count)		{			if (buffer == null) {				throw new ArgumentNullException("nameof(buffer)");			}			if (offset < 0) {				throw new ArgumentOutOfRangeException("nameof(offset)", "cannot be less than zero");			}			if (offset >= buffer.Length) {				throw new ArgumentOutOfRangeException("nameof(offset)", "not a valid index into buffer");			}			if (count < 0) {				throw new ArgumentOutOfRangeException("nameof(count)", "cannot be less than zero");			}			if (offset + count > buffer.Length) {				throw new ArgumentOutOfRangeException("nameof(count)", "exceeds buffer size");			}			//(By Per Bothner)			uint s1 = checkValue & 0xFFFF;			uint s2 = checkValue >> 16;			while (count > 0) {				// We can defer the modulo operation:				// s1 maximally grows from 65521 to 65521 + 255 * 3800				// s2 maximally grows by 3800 * median(s1) = 2090079800 < 2^31				int n = 3800;				if (n > count) {					n = count;				}				count -= n;				while (--n >= 0) {					s1 = s1 + (uint)(buffer[offset++] & 0xff);					s2 = s2 + s1;				}				s1 %= BASE;				s2 %= BASE;			}			checkValue = (s2 << 16) | s1;		}	}}
 |