using System;
using System.Security.Cryptography;
namespace ICSharpCode.SharpZipLib.Encryption
{
///
/// Transforms stream using AES in CTR mode
///
internal class ZipAESTransform : ICryptoTransform
{
class IncrementalHash : HMACSHA1
{
bool _finalised;
public IncrementalHash(byte[] key) : base(key) { }
public static IncrementalHash CreateHMAC(string n, byte[] key)
{
return new IncrementalHash(key);
}
public void AppendData(byte[] buffer, int offset, int count)
{
TransformBlock(buffer, offset, count, buffer, offset);
}
public byte[] GetHashAndReset()
{
if (!_finalised)
{
byte[] dummy = new byte[0];
TransformFinalBlock(dummy, 0, 0);
_finalised = true;
}
return Hash;
}
}
static class HashAlgorithmName
{
public static string SHA1 = null;
}
private const int PWD_VER_LENGTH = 2;
// WinZip use iteration count of 1000 for PBKDF2 key generation
private const int KEY_ROUNDS = 1000;
// For 128-bit AES (16 bytes) the encryption is implemented as expected.
// For 256-bit AES (32 bytes) WinZip do full 256 bit AES of the nonce to create the encryption
// block but use only the first 16 bytes of it, and discard the second half.
private const int ENCRYPT_BLOCK = 16;
private int _blockSize;
private readonly ICryptoTransform _encryptor;
private readonly byte[] _counterNonce;
private byte[] _encryptBuffer;
private int _encrPos;
private byte[] _pwdVerifier;
private IncrementalHash _hmacsha1;
private byte[] _authCode = null;
private bool _writeMode;
///
/// Constructor.
///
/// Password string
/// Random bytes, length depends on encryption strength.
/// 128 bits = 8 bytes, 192 bits = 12 bytes, 256 bits = 16 bytes.
/// The encryption strength, in bytes eg 16 for 128 bits.
/// True when creating a zip, false when reading. For the AuthCode.
///
public ZipAESTransform(string key, byte[] saltBytes, int blockSize, bool writeMode)
{
if (blockSize != 16 && blockSize != 32) // 24 valid for AES but not supported by Winzip
throw new Exception("Invalid blocksize " + blockSize + ". Must be 16 or 32.");
if (saltBytes.Length != blockSize / 2)
throw new Exception("Invalid salt len. Must be " + blockSize / 2 + " for blocksize " + blockSize);
// initialise the encryption buffer and buffer pos
_blockSize = blockSize;
_encryptBuffer = new byte[_blockSize];
_encrPos = ENCRYPT_BLOCK;
// Performs the equivalent of derive_key in Dr Brian Gladman's pwd2key.c
var pdb = new Rfc2898DeriveBytes(key, saltBytes, KEY_ROUNDS);
var rm = Aes.Create();
rm.Mode = CipherMode.ECB; // No feedback from cipher for CTR mode
_counterNonce = new byte[_blockSize];
byte[] byteKey1 = pdb.GetBytes(_blockSize);
byte[] byteKey2 = pdb.GetBytes(_blockSize);
_encryptor = rm.CreateEncryptor(byteKey1, byteKey2);
_pwdVerifier = pdb.GetBytes(PWD_VER_LENGTH);
//
_hmacsha1 = IncrementalHash.CreateHMAC(HashAlgorithmName.SHA1, byteKey2);
_writeMode = writeMode;
}
///
/// Implement the ICryptoTransform method.
///
public int TransformBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
{
// Pass the data stream to the hash algorithm for generating the Auth Code.
// This does not change the inputBuffer. Do this before decryption for read mode.
if (!_writeMode) {
_hmacsha1.AppendData(inputBuffer, inputOffset, inputCount);
}
// Encrypt with AES in CTR mode. Regards to Dr Brian Gladman for this.
int ix = 0;
while (ix < inputCount) {
if (_encrPos == ENCRYPT_BLOCK) {
/* increment encryption nonce */
int j = 0;
while (++_counterNonce[j] == 0) {
++j;
}
/* encrypt the nonce to form next xor buffer */
_encryptor.TransformBlock(_counterNonce, 0, _blockSize, _encryptBuffer, 0);
_encrPos = 0;
}
outputBuffer[ix + outputOffset] = (byte)(inputBuffer[ix + inputOffset] ^ _encryptBuffer[_encrPos++]);
//
ix++;
}
if (_writeMode) {
// This does not change the buffer.
_hmacsha1.AppendData(outputBuffer, outputOffset, inputCount);
}
return inputCount;
}
///
/// Returns the 2 byte password verifier
///
public byte[] PwdVerifier {
get {
return _pwdVerifier;
}
}
///
/// Returns the 10 byte AUTH CODE to be checked or appended immediately following the AES data stream.
///
public byte[] GetAuthCode()
{
if (_authCode == null)
{
_authCode = _hmacsha1.GetHashAndReset();
}
return _authCode;
}
#region ICryptoTransform Members
///
/// Not implemented.
///
public byte[] TransformFinalBlock(byte[] inputBuffer, int inputOffset, int inputCount)
{
throw new NotImplementedException("ZipAESTransform.TransformFinalBlock");
}
///
/// Gets the size of the input data blocks in bytes.
///
public int InputBlockSize {
get {
return _blockSize;
}
}
///
/// Gets the size of the output data blocks in bytes.
///
public int OutputBlockSize {
get {
return _blockSize;
}
}
///
/// Gets a value indicating whether multiple blocks can be transformed.
///
public bool CanTransformMultipleBlocks {
get {
return true;
}
}
///
/// Gets a value indicating whether the current transform can be reused.
///
public bool CanReuseTransform {
get {
return true;
}
}
///
/// Cleanup internal state.
///
public void Dispose()
{
_encryptor.Dispose();
}
#endregion
}
}