using System;
using System.Security.Cryptography;
using ICSharpCode.SharpZipLib.Checksum;
namespace ICSharpCode.SharpZipLib.Encryption
{
///
/// PkzipClassic embodies the classic or original encryption facilities used in Pkzip archives.
/// While it has been superceded by more recent and more powerful algorithms, its still in use and
/// is viable for preventing casual snooping
///
public abstract class PkzipClassic : SymmetricAlgorithm
{
///
/// Generates new encryption keys based on given seed
///
/// The seed value to initialise keys with.
/// A new key value.
static public byte[] GenerateKeys(byte[] seed)
{
if (seed == null) {
throw new ArgumentNullException("nameof(seed)");
}
if (seed.Length == 0) {
throw new ArgumentException("Length is zero", "nameof(seed)");
}
uint[] newKeys = {
0x12345678,
0x23456789,
0x34567890
};
for (int i = 0; i < seed.Length; ++i) {
newKeys[0] = Crc32.ComputeCrc32(newKeys[0], seed[i]);
newKeys[1] = newKeys[1] + (byte)newKeys[0];
newKeys[1] = newKeys[1] * 134775813 + 1;
newKeys[2] = Crc32.ComputeCrc32(newKeys[2], (byte)(newKeys[1] >> 24));
}
byte[] result = new byte[12];
result[0] = (byte)(newKeys[0] & 0xff);
result[1] = (byte)((newKeys[0] >> 8) & 0xff);
result[2] = (byte)((newKeys[0] >> 16) & 0xff);
result[3] = (byte)((newKeys[0] >> 24) & 0xff);
result[4] = (byte)(newKeys[1] & 0xff);
result[5] = (byte)((newKeys[1] >> 8) & 0xff);
result[6] = (byte)((newKeys[1] >> 16) & 0xff);
result[7] = (byte)((newKeys[1] >> 24) & 0xff);
result[8] = (byte)(newKeys[2] & 0xff);
result[9] = (byte)((newKeys[2] >> 8) & 0xff);
result[10] = (byte)((newKeys[2] >> 16) & 0xff);
result[11] = (byte)((newKeys[2] >> 24) & 0xff);
return result;
}
}
///
/// PkzipClassicCryptoBase provides the low level facilities for encryption
/// and decryption using the PkzipClassic algorithm.
///
class PkzipClassicCryptoBase
{
///
/// Transform a single byte
///
///
/// The transformed value
///
protected byte TransformByte()
{
uint temp = ((keys[2] & 0xFFFF) | 2);
return (byte)((temp * (temp ^ 1)) >> 8);
}
///
/// Set the key schedule for encryption/decryption.
///
/// The data use to set the keys from.
protected void SetKeys(byte[] keyData)
{
if (keyData == null) {
throw new ArgumentNullException("nameof(keyData)");
}
if (keyData.Length != 12) {
throw new InvalidOperationException("Key length is not valid");
}
keys = new uint[3];
keys[0] = (uint)((keyData[3] << 24) | (keyData[2] << 16) | (keyData[1] << 8) | keyData[0]);
keys[1] = (uint)((keyData[7] << 24) | (keyData[6] << 16) | (keyData[5] << 8) | keyData[4]);
keys[2] = (uint)((keyData[11] << 24) | (keyData[10] << 16) | (keyData[9] << 8) | keyData[8]);
}
///
/// Update encryption keys
///
protected void UpdateKeys(byte ch)
{
keys[0] = Crc32.ComputeCrc32(keys[0], ch);
keys[1] = keys[1] + (byte)keys[0];
keys[1] = keys[1] * 134775813 + 1;
keys[2] = Crc32.ComputeCrc32(keys[2], (byte)(keys[1] >> 24));
}
///
/// Reset the internal state.
///
protected void Reset()
{
keys[0] = 0;
keys[1] = 0;
keys[2] = 0;
}
#region Instance Fields
uint[] keys;
#endregion
}
///
/// PkzipClassic CryptoTransform for encryption.
///
class PkzipClassicEncryptCryptoTransform : PkzipClassicCryptoBase, ICryptoTransform
{
///
/// Initialise a new instance of
///
/// The key block to use.
internal PkzipClassicEncryptCryptoTransform(byte[] keyBlock)
{
SetKeys(keyBlock);
}
#region ICryptoTransform Members
///
/// Transforms the specified region of the specified byte array.
///
/// The input for which to compute the transform.
/// The offset into the byte array from which to begin using data.
/// The number of bytes in the byte array to use as data.
/// The computed transform.
public byte[] TransformFinalBlock(byte[] inputBuffer, int inputOffset, int inputCount)
{
byte[] result = new byte[inputCount];
TransformBlock(inputBuffer, inputOffset, inputCount, result, 0);
return result;
}
///
/// Transforms the specified region of the input byte array and copies
/// the resulting transform to the specified region of the output byte array.
///
/// The input for which to compute the transform.
/// The offset into the input byte array from which to begin using data.
/// The number of bytes in the input byte array to use as data.
/// The output to which to write the transform.
/// The offset into the output byte array from which to begin writing data.
/// The number of bytes written.
public int TransformBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
{
for (int i = inputOffset; i < inputOffset + inputCount; ++i) {
byte oldbyte = inputBuffer[i];
outputBuffer[outputOffset++] = (byte)(inputBuffer[i] ^ TransformByte());
UpdateKeys(oldbyte);
}
return inputCount;
}
///
/// Gets a value indicating whether the current transform can be reused.
///
public bool CanReuseTransform {
get {
return true;
}
}
///
/// Gets the size of the input data blocks in bytes.
///
public int InputBlockSize {
get {
return 1;
}
}
///
/// Gets the size of the output data blocks in bytes.
///
public int OutputBlockSize {
get {
return 1;
}
}
///
/// Gets a value indicating whether multiple blocks can be transformed.
///
public bool CanTransformMultipleBlocks {
get {
return true;
}
}
#endregion
#region IDisposable Members
///
/// Cleanup internal state.
///
public void Dispose()
{
Reset();
}
#endregion
}
///
/// PkzipClassic CryptoTransform for decryption.
///
class PkzipClassicDecryptCryptoTransform : PkzipClassicCryptoBase, ICryptoTransform
{
///
/// Initialise a new instance of .
///
/// The key block to decrypt with.
internal PkzipClassicDecryptCryptoTransform(byte[] keyBlock)
{
SetKeys(keyBlock);
}
#region ICryptoTransform Members
///
/// Transforms the specified region of the specified byte array.
///
/// The input for which to compute the transform.
/// The offset into the byte array from which to begin using data.
/// The number of bytes in the byte array to use as data.
/// The computed transform.
public byte[] TransformFinalBlock(byte[] inputBuffer, int inputOffset, int inputCount)
{
byte[] result = new byte[inputCount];
TransformBlock(inputBuffer, inputOffset, inputCount, result, 0);
return result;
}
///
/// Transforms the specified region of the input byte array and copies
/// the resulting transform to the specified region of the output byte array.
///
/// The input for which to compute the transform.
/// The offset into the input byte array from which to begin using data.
/// The number of bytes in the input byte array to use as data.
/// The output to which to write the transform.
/// The offset into the output byte array from which to begin writing data.
/// The number of bytes written.
public int TransformBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
{
for (int i = inputOffset; i < inputOffset + inputCount; ++i) {
var newByte = (byte)(inputBuffer[i] ^ TransformByte());
outputBuffer[outputOffset++] = newByte;
UpdateKeys(newByte);
}
return inputCount;
}
///
/// Gets a value indicating whether the current transform can be reused.
///
public bool CanReuseTransform {
get {
return true;
}
}
///
/// Gets the size of the input data blocks in bytes.
///
public int InputBlockSize {
get {
return 1;
}
}
///
/// Gets the size of the output data blocks in bytes.
///
public int OutputBlockSize {
get {
return 1;
}
}
///
/// Gets a value indicating whether multiple blocks can be transformed.
///
public bool CanTransformMultipleBlocks {
get {
return true;
}
}
#endregion
#region IDisposable Members
///
/// Cleanup internal state.
///
public void Dispose()
{
Reset();
}
#endregion
}
///
/// Defines a wrapper object to access the Pkzip algorithm.
/// This class cannot be inherited.
///
public sealed class PkzipClassicManaged : PkzipClassic
{
///
/// Get / set the applicable block size in bits.
///
/// The only valid block size is 8.
public override int BlockSize {
get {
return 8;
}
set {
if (value != 8) {
throw new CryptographicException("Block size is invalid");
}
}
}
///
/// Get an array of legal key sizes.
///
public override KeySizes[] LegalKeySizes {
get {
KeySizes[] keySizes = new KeySizes[1];
keySizes[0] = new KeySizes(12 * 8, 12 * 8, 0);
return keySizes;
}
}
///
/// Generate an initial vector.
///
public override void GenerateIV()
{
// Do nothing.
}
///
/// Get an array of legal block sizes.
///
public override KeySizes[] LegalBlockSizes {
get {
KeySizes[] keySizes = new KeySizes[1];
keySizes[0] = new KeySizes(1 * 8, 1 * 8, 0);
return keySizes;
}
}
///
/// Get / set the key value applicable.
///
public override byte[] Key {
get {
if (key_ == null) {
GenerateKey();
}
return (byte[])key_.Clone();
}
set {
if (value == null) {
throw new ArgumentNullException("nameof(value)");
}
if (value.Length != 12) {
throw new CryptographicException("Key size is illegal");
}
key_ = (byte[])value.Clone();
}
}
///
/// Generate a new random key.
///
public override void GenerateKey()
{
key_ = new byte[12];
var rnd = new Random();
rnd.NextBytes(key_);
}
///
/// Create an encryptor.
///
/// The key to use for this encryptor.
/// Initialisation vector for the new encryptor.
/// Returns a new PkzipClassic encryptor
public override ICryptoTransform CreateEncryptor(
byte[] rgbKey,
byte[] rgbIV)
{
key_ = rgbKey;
return new PkzipClassicEncryptCryptoTransform(Key);
}
///
/// Create a decryptor.
///
/// Keys to use for this new decryptor.
/// Initialisation vector for the new decryptor.
/// Returns a new decryptor.
public override ICryptoTransform CreateDecryptor(
byte[] rgbKey,
byte[] rgbIV)
{
key_ = rgbKey;
return new PkzipClassicDecryptCryptoTransform(Key);
}
#region Instance Fields
byte[] key_;
#endregion
}
}