|
@@ -0,0 +1,453 @@
|
|
|
+using System;
|
|
|
+using System.Collections.Generic;
|
|
|
+using Core.BRG;
|
|
|
+using Unity.Collections;
|
|
|
+using Unity.Collections.LowLevel.Unsafe;
|
|
|
+using Unity.Burst;
|
|
|
+using Unity.Mathematics;
|
|
|
+using Unity.Jobs;
|
|
|
+using UnityEngine;
|
|
|
+using UnityEngine.Rendering;
|
|
|
+
|
|
|
+/*
|
|
|
+ 这个类使用BRG(Batch Renderer Group)处理地面格子和碎片的渲染。
|
|
|
+ 地面格子和碎片可以使用相同的GPU数据布局:
|
|
|
+ - obj2world 矩阵 (3 * float4)
|
|
|
+ - world2obj 矩阵 (3 * float4)
|
|
|
+ - 颜色 (1 * float4)
|
|
|
+
|
|
|
+ 所以每个网格需要7个float4。
|
|
|
+
|
|
|
+ 不要忘记数据是以SoA(Structure of Arrays)方式存储的
|
|
|
+*/
|
|
|
+
|
|
|
+/// <summary>
|
|
|
+/// BRG容器类,用于管理使用BatchRendererGroup的实例化渲染
|
|
|
+/// </summary>
|
|
|
+public unsafe class BRGRenderBasic
|
|
|
+{
|
|
|
+ // 在GLES模式下,BRG原始缓冲区是一个常量缓冲区(UBO)
|
|
|
+ private bool UseConstantBuffer => BatchRendererGroup.BufferTarget == BatchBufferTarget.ConstantBuffer;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ private int m_maxInstances; // 此容器中的最大项目数
|
|
|
+ private int m_instanceCount; // 当前项目数量
|
|
|
+ private int m_alignedGPUWindowSize; // BRG原始窗口大小
|
|
|
+ private int m_maxInstancePerWindow; // 每个窗口的最大实例数
|
|
|
+ private int m_windowCount; // 窗口数量(在SSBO模式下为1,在UBO模式下为n)
|
|
|
+ private int m_totalGpuBufferSize; // 原始缓冲区的总大小
|
|
|
+ private NativeArray<float3x4> m_transfromBuffer; // 原始缓冲区的系统内存副本
|
|
|
+ public NativeArray<float4> m_sysmemColorBuffer;
|
|
|
+ private bool m_initialized; // 是否已初始化
|
|
|
+ private int m_instanceSize; // 项目大小(以字节为单位)
|
|
|
+ private BatchID[] m_batchIDs; // 每个窗口对应一个batchID
|
|
|
+ private BatchMaterialID m_materialID; // 材质ID
|
|
|
+ private BatchMeshID m_meshID; // 网格ID
|
|
|
+ private BatchRendererGroup m_BatchRendererGroup; // BRG对象
|
|
|
+ private GraphicsBuffer m_GPUPersistentInstanceData; // GPU原始缓冲区(可能是SSBO或UBO)
|
|
|
+
|
|
|
+ protected BRGSamples m_samples;
|
|
|
+ /// <summary>
|
|
|
+ /// 创建BRG对象并分配缓冲区
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="mesh">要渲染的网格</param>
|
|
|
+ /// <param name="mat">要使用的材质</param>
|
|
|
+ /// <param name="maxInstances">最大实例数</param>
|
|
|
+ /// <param name="instanceSize">每个实例的大小(以字节为单位)</param>
|
|
|
+ /// <param name="castShadows">是否投射阴影</param>
|
|
|
+ /// <returns>初始化是否成功</returns>
|
|
|
+ protected bool Init(BRGSamples samples, int maxInstances, int instanceSize)
|
|
|
+ {
|
|
|
+ // 创建BRG对象,指定我们的BRG回调函数
|
|
|
+ m_BatchRendererGroup = new BatchRendererGroup(this.OnPerformCulling, IntPtr.Zero);
|
|
|
+ instanceSize+=(3*2*16); // 额外添加obj2world和world2obj矩阵的大小
|
|
|
+ m_instanceSize = instanceSize;
|
|
|
+ m_instanceCount = 0;
|
|
|
+ m_maxInstances = maxInstances;
|
|
|
+ m_samples = samples;
|
|
|
+
|
|
|
+ // BRG使用一个大的GPU缓冲区。这在几乎所有平台上都是一个原始缓冲区,在GLES上是一个常量缓冲区
|
|
|
+ // 在常量缓冲区的情况下,我们将其分割成几个大小为BatchRendererGroup.GetConstantBufferMaxWindowSize()字节的"窗口"
|
|
|
+ if (UseConstantBuffer)
|
|
|
+ {
|
|
|
+ // 获取常量缓冲区的最大窗口大小
|
|
|
+ m_alignedGPUWindowSize = BatchRendererGroup.GetConstantBufferMaxWindowSize();
|
|
|
+ // 计算每个窗口可以容纳的最大实例数
|
|
|
+ m_maxInstancePerWindow = m_alignedGPUWindowSize / instanceSize;
|
|
|
+ // 计算需要的窗口数量(向上取整)
|
|
|
+ m_windowCount = (m_maxInstances + m_maxInstancePerWindow - 1) / m_maxInstancePerWindow;
|
|
|
+ // 计算总的GPU缓冲区大小
|
|
|
+ m_totalGpuBufferSize = m_windowCount * m_alignedGPUWindowSize;
|
|
|
+ // 创建常量缓冲区(目标类型为Constant,大小为总字节数/16,每个元素16字节)
|
|
|
+ m_GPUPersistentInstanceData =
|
|
|
+ new GraphicsBuffer(GraphicsBuffer.Target.Constant, m_totalGpuBufferSize / 16, 16);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // 计算对齐后的GPU窗口大小,确保是16字节对齐 ((size + 15) & (-16) 是向上取整到16的倍数的位运算技巧)
|
|
|
+ m_alignedGPUWindowSize = (m_maxInstances * instanceSize + 15) & (-16);
|
|
|
+ // 在SSBO模式下,每个窗口可以容纳所有实例
|
|
|
+ m_maxInstancePerWindow = maxInstances;
|
|
|
+ // SSBO模式只需要一个窗口
|
|
|
+ m_windowCount = 1;
|
|
|
+ // 总的GPU缓冲区大小等于单个窗口大小
|
|
|
+ m_totalGpuBufferSize = m_windowCount * m_alignedGPUWindowSize;
|
|
|
+ // 创建原始缓冲区(目标类型为Raw,大小为总字节数/4,每个元素4字节)
|
|
|
+ m_GPUPersistentInstanceData = new GraphicsBuffer(GraphicsBuffer.Target.Raw, m_totalGpuBufferSize / 4, 4);
|
|
|
+ }
|
|
|
+
|
|
|
+ // 在我们的示例游戏中,我们处理3个实例化属性:obj2world、world2obj和baseColor
|
|
|
+ var batchMetadata = new NativeArray<MetadataValue>(2, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
|
|
|
+
|
|
|
+ // 批处理元数据缓冲区
|
|
|
+ int objectToWorldID = Shader.PropertyToID("unity_ObjectToWorld");
|
|
|
+ int worldToObjectID = Shader.PropertyToID("unity_WorldToObject");
|
|
|
+ // int colorID = Shader.PropertyToID("_BaseColor");
|
|
|
+
|
|
|
+ // 创建大GPU原始缓冲区的系统内存副本
|
|
|
+ m_transfromBuffer =
|
|
|
+ new NativeArray<float3x4>(maxInstances * 2, Allocator.Persistent, NativeArrayOptions.ClearMemory);
|
|
|
+ m_sysmemColorBuffer =
|
|
|
+ new NativeArray<float4>(maxInstances, Allocator.Persistent, NativeArrayOptions.ClearMemory);
|
|
|
+ // register one kind of batch per "window" in the large BRG raw buffer
|
|
|
+ m_batchIDs = new BatchID[m_windowCount];
|
|
|
+ for (int b = 0; b < m_windowCount; b++)
|
|
|
+ {
|
|
|
+ // 设置obj2world矩阵属性元数据,偏移量为0
|
|
|
+ batchMetadata[0] = CreateMetadataValue(objectToWorldID, 0, true);
|
|
|
+ // 设置world2obj矩阵属性元数据,偏移量为窗口内矩阵数据之后
|
|
|
+ batchMetadata[1] = CreateMetadataValue(worldToObjectID, m_maxInstancePerWindow * 3 * 16, true);
|
|
|
+ int startOffset = m_maxInstancePerWindow * 3 * 2 * 16;
|
|
|
+ NativeArray<MetadataValue> metadata = ProInitBatchMetadata(startOffset,m_maxInstancePerWindow);
|
|
|
+ NativeArray<MetadataValue> newBatchMetadata = new NativeArray<MetadataValue>(
|
|
|
+ batchMetadata.Length + metadata.Length, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
|
|
|
+ for (int i = 0; i < batchMetadata.Length; i++)
|
|
|
+ {
|
|
|
+ newBatchMetadata[i] = batchMetadata[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 0; i < metadata.Length; i++)
|
|
|
+ {
|
|
|
+ newBatchMetadata[batchMetadata.Length + i] = metadata[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ // // 设置颜色属性元数据,偏移量为窗口内所有矩阵数据之后
|
|
|
+ // batchMetadata[2] = CreateMetadataValue(colorID, m_maxInstancePerWindow * 3 * 2 * 16, true);
|
|
|
+ // 计算当前批次在GPU缓冲区中的偏移量
|
|
|
+ int offset = b * m_alignedGPUWindowSize;
|
|
|
+ // 添加批次到BatchRendererGroup,指定元数据、缓冲区句柄和偏移量
|
|
|
+ m_batchIDs[b] = m_BatchRendererGroup.AddBatch(newBatchMetadata, m_GPUPersistentInstanceData.bufferHandle,
|
|
|
+ (uint)offset, UseConstantBuffer ? (uint)m_alignedGPUWindowSize : 0);
|
|
|
+ newBatchMetadata.Dispose();
|
|
|
+ metadata.Dispose();
|
|
|
+ }
|
|
|
+
|
|
|
+ // 我们不再需要这个元数据描述数组
|
|
|
+ batchMetadata.Dispose();
|
|
|
+
|
|
|
+ // 设置非常大的边界以确保BRG永远不会被剔除
|
|
|
+ UnityEngine.Bounds bounds = ProGetBounds();
|
|
|
+ m_BatchRendererGroup.SetGlobalBounds(bounds);
|
|
|
+
|
|
|
+ // 注册网格和材质
|
|
|
+ if (m_samples.Mesh) m_meshID = m_BatchRendererGroup.RegisterMesh(m_samples.Mesh);
|
|
|
+ if (m_samples.Material) m_materialID = m_BatchRendererGroup.RegisterMaterial(m_samples.Material);
|
|
|
+
|
|
|
+ m_initialized = true;
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ protected virtual Bounds ProGetBounds()
|
|
|
+ {
|
|
|
+ return new Bounds(new Vector3(0, 0, 0), new Vector3(1048576.0f, 1048576.0f, 1048576.0f));
|
|
|
+ }
|
|
|
+
|
|
|
+ protected virtual NativeArray<MetadataValue> ProInitBatchMetadata(int startOffset,int count)
|
|
|
+ {
|
|
|
+ return new NativeArray<MetadataValue>(0, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// 更新位置信息
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="instanceCount"></param>
|
|
|
+ /// <returns></returns>
|
|
|
+ protected bool UploadTransformData(int instanceCount)
|
|
|
+ {
|
|
|
+ if ((uint)instanceCount > (uint)m_maxInstances)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ // 更新当前实例数量
|
|
|
+ m_instanceCount = instanceCount;
|
|
|
+ // 计算完整窗口的数量
|
|
|
+ int completeWindows = m_instanceCount / m_maxInstancePerWindow;
|
|
|
+
|
|
|
+ // 一次性更新所有完整的窗口
|
|
|
+ if (completeWindows >= 0)
|
|
|
+ {
|
|
|
+ // 计算需要更新的数据大小(以float4为单位)
|
|
|
+ // int sizeInFloat4 = (completeWindows * m_alignedGPUWindowSize) / (16 * 4);
|
|
|
+
|
|
|
+ // 将系统内存缓冲区的数据上传到GPU缓冲区
|
|
|
+ m_GPUPersistentInstanceData.SetData(m_transfromBuffer, 0, 0, m_maxInstancePerWindow * 2);
|
|
|
+
|
|
|
+ // int off = m_maxInstancePerWindow * 2 * 3 * 16;
|
|
|
+ // m_GPUPersistentInstanceData.SetData(m_sysmemColorBuffer, 0, off / 16, m_maxInstancePerWindow);
|
|
|
+ }
|
|
|
+
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ /// <summary>
|
|
|
+ /// 根据"instanceCount"上传最小的GPU数据
|
|
|
+ /// 由于使用了SoA且此类管理3个BRG属性(2个矩阵和1个颜色),最后一个窗口可能需要多达3次SetData调用
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="instanceCount">实例数量</param>
|
|
|
+ /// <returns>上传是否成功</returns>
|
|
|
+ public bool UploadGpuData(int instanceCount,List<BatchShaderBind> shaderBinds=null)
|
|
|
+ {
|
|
|
+ // 检查实例数量是否超过最大限制
|
|
|
+ if ((uint)instanceCount > (uint)m_maxInstances)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ // 更新当前实例数量
|
|
|
+ m_instanceCount = instanceCount;
|
|
|
+ // 计算完整窗口的数量
|
|
|
+ int completeWindows = m_instanceCount / m_maxInstancePerWindow;
|
|
|
+
|
|
|
+ // 一次性更新所有完整的窗口
|
|
|
+ if (completeWindows >= 0)
|
|
|
+ {
|
|
|
+ // 计算需要更新的数据大小(以float4为单位)
|
|
|
+ // int sizeInFloat4 = (completeWindows * m_alignedGPUWindowSize) / (16 * 4);
|
|
|
+
|
|
|
+ // 将系统内存缓冲区的数据上传到GPU缓冲区
|
|
|
+ m_GPUPersistentInstanceData.SetData(m_transfromBuffer, 0, 0, m_maxInstancePerWindow * 2);
|
|
|
+ if (shaderBinds != null)
|
|
|
+ {
|
|
|
+ for (int i = 0; i < shaderBinds.Count; i++)
|
|
|
+ {
|
|
|
+ shaderBinds[i].SetData(m_GPUPersistentInstanceData);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // int off = m_maxInstancePerWindow * 2 * 3 * 16;
|
|
|
+ // m_GPUPersistentInstanceData.SetData(m_sysmemColorBuffer, 0, off / 16, m_maxInstancePerWindow);
|
|
|
+ }
|
|
|
+
|
|
|
+ // 然后上传最后一个(不完整)窗口的数据
|
|
|
+ int lastBatchId = completeWindows;
|
|
|
+ // 计算最后一个窗口中的实例数量
|
|
|
+ int itemInLastBatch = m_instanceCount - m_maxInstancePerWindow * completeWindows;
|
|
|
+
|
|
|
+ // 如果最后一个窗口中有数据需要上传
|
|
|
+ // if (itemInLastBatch > 0)
|
|
|
+ // {
|
|
|
+ // // 计算窗口在float4单位中的偏移量
|
|
|
+ // int windowOffsetInFloat4 = (lastBatchId * m_alignedGPUWindowSize) / 16 * 3;
|
|
|
+ // // 计算obj2world矩阵在缓冲区中的偏移量
|
|
|
+ // int offsetMat1 = windowOffsetInFloat4 + m_maxInstancePerWindow * 0;
|
|
|
+ // // 计算world2obj矩阵在缓冲区中的偏移量
|
|
|
+ // int offsetMat2 = windowOffsetInFloat4 + m_maxInstancePerWindow * 3;
|
|
|
+ // // 计算颜色数据在缓冲区中的偏移量
|
|
|
+ // int offsetColor = windowOffsetInFloat4 + m_maxInstancePerWindow * 3 * 2;
|
|
|
+ // // 上传obj2world矩阵数据(每个实例3个float4)
|
|
|
+ //
|
|
|
+ // m_GPUPersistentInstanceData.SetData(m_sysmemBuffer, offsetMat1, offsetMat1, itemInLastBatch * 3);
|
|
|
+ // // 上传world2obj矩阵数据(每个实例3个float4)
|
|
|
+ // m_GPUPersistentInstanceData.SetData(m_sysmemBuffer, offsetMat2, offsetMat2, itemInLastBatch * 3);
|
|
|
+ // // // 上传颜色数据(每个实例1个float4)
|
|
|
+ // // m_GPUPersistentInstanceData.SetData(m_sysmemBuffer, offsetColor, offsetColor, itemInLastBatch * 1);
|
|
|
+ // }
|
|
|
+
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// 释放所有已分配的缓冲区
|
|
|
+ /// </summary>
|
|
|
+ public void Shutdown()
|
|
|
+ {
|
|
|
+ if (m_initialized)
|
|
|
+ {
|
|
|
+ for (uint b = 0; b < m_windowCount; b++)
|
|
|
+ m_BatchRendererGroup.RemoveBatch(m_batchIDs[b]);
|
|
|
+
|
|
|
+ m_BatchRendererGroup.UnregisterMaterial(m_materialID);
|
|
|
+ m_BatchRendererGroup.UnregisterMesh(m_meshID);
|
|
|
+ m_BatchRendererGroup.Dispose();
|
|
|
+ m_GPUPersistentInstanceData.Dispose();
|
|
|
+ m_transfromBuffer.Dispose();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// 返回系统内存缓冲区和窗口大小,以便BRG_Background和BRG_Debris可以用新内容填充缓冲区
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="totalSize">总大小</param>
|
|
|
+ /// <param name="alignedWindowSize">对齐的窗口大小</param>
|
|
|
+ /// <returns>系统内存缓冲区</returns>
|
|
|
+ public NativeArray<float3x4> GetSysmemBuffer(out int totalSize, out int alignedWindowSize)
|
|
|
+ {
|
|
|
+ totalSize = m_totalGpuBufferSize;
|
|
|
+ alignedWindowSize = m_alignedGPUWindowSize;
|
|
|
+ return m_transfromBuffer;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// 创建32位元数据值的辅助函数。Bit 31表示属性是否每个实例都有不同的值
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="nameID">属性名称ID</param>
|
|
|
+ /// <param name="gpuOffset">GPU偏移量</param>
|
|
|
+ /// <param name="isPerInstance">是否每个实例都不同</param>
|
|
|
+ /// <returns>元数据值</returns>
|
|
|
+ protected MetadataValue CreateMetadataValue(int nameID, int gpuOffset, bool isPerInstance)
|
|
|
+ {
|
|
|
+ // 定义实例化标志位(最高位,即第31位)
|
|
|
+ const uint kIsPerInstanceBit = 0x80000000;
|
|
|
+ return new MetadataValue
|
|
|
+ {
|
|
|
+ NameID = nameID, // Shader属性名称ID
|
|
|
+ // 将GPU偏移量与实例化标志位进行按位或运算
|
|
|
+ // 如果是实例化属性,则设置最高位为1,否则保持原偏移量
|
|
|
+ Value = (uint)gpuOffset | (isPerInstance ? (kIsPerInstanceBit) : 0),
|
|
|
+ };
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// 在BRG回调函数期间分配BRG缓冲区的辅助函数
|
|
|
+ /// </summary>
|
|
|
+ /// <typeparam name="T">元素类型</typeparam>
|
|
|
+ /// <param name="count">元素数量</param>
|
|
|
+ /// <returns>分配的内存指针</returns>
|
|
|
+ private static T* Malloc<T>(uint count) where T : unmanaged
|
|
|
+ {
|
|
|
+ return (T*)UnsafeUtility.Malloc(
|
|
|
+ UnsafeUtility.SizeOf<T>() * count,
|
|
|
+ UnsafeUtility.AlignOf<T>(),
|
|
|
+ Allocator.TempJob);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// 每帧的主BRG入口点。在此示例中我们使用BatchCullingContext进行视锥剔除
|
|
|
+ /// 此回调负责用所有需要渲染的项目填充cullingOutput
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="rendererGroup">渲染组</param>
|
|
|
+ /// <param name="cullingContext">剔除上下文</param>
|
|
|
+ /// <param name="cullingOutput">剔除输出</param>
|
|
|
+ /// <param name="userContext">用户上下文</param>
|
|
|
+ /// <returns>作业句柄</returns>
|
|
|
+ public virtual JobHandle OnPerformCulling(BatchRendererGroup rendererGroup, BatchCullingContext cullingContext,
|
|
|
+ BatchCullingOutput cullingOutput, IntPtr userContext)
|
|
|
+ {
|
|
|
+ if (m_initialized)
|
|
|
+ {
|
|
|
+ // 创建绘制命令结构体,用于存储渲染命令信息
|
|
|
+ BatchCullingOutputDrawCommands drawCommands = new BatchCullingOutputDrawCommands();
|
|
|
+
|
|
|
+ // 计算UBO模式下我们需要的绘制命令数量(每个窗口一个绘制命令)
|
|
|
+ int drawCommandCount = (m_instanceCount + m_maxInstancePerWindow - 1) / m_maxInstancePerWindow;
|
|
|
+ int maxInstancePerDrawCommand = m_maxInstancePerWindow;
|
|
|
+ drawCommands.drawCommandCount = drawCommandCount;
|
|
|
+
|
|
|
+ // 分配单个BatchDrawRange。(所有绘制命令都将引用此BatchDrawRange)
|
|
|
+ drawCommands.drawRangeCount = 1;
|
|
|
+ drawCommands.drawRanges = Malloc<BatchDrawRange>(1);
|
|
|
+ drawCommands.drawRanges[0] = new BatchDrawRange
|
|
|
+ {
|
|
|
+ // 绘制命令开始索引
|
|
|
+ drawCommandsBegin = 0,
|
|
|
+ // 绘制命令数量
|
|
|
+ drawCommandsCount = (uint)drawCommandCount,
|
|
|
+ // 过滤设置
|
|
|
+ filterSettings = new BatchFilterSettings
|
|
|
+ {
|
|
|
+ // 渲染层掩码
|
|
|
+ renderingLayerMask = 1,
|
|
|
+ // 层级
|
|
|
+ layer = 0,
|
|
|
+ // 运动向量生成模式
|
|
|
+ motionMode = MotionVectorGenerationMode.Camera,
|
|
|
+ // 阴影投射模式,根据m_castShadows决定是否投射阴影
|
|
|
+ shadowCastingMode = m_samples.castShadows ? ShadowCastingMode.On : ShadowCastingMode.Off,
|
|
|
+ // 是否接收阴影
|
|
|
+ receiveShadows = m_samples.receiveShadows,
|
|
|
+ // 是否为静态阴影投射器
|
|
|
+ staticShadowCaster = m_samples.staticShadowCaster,
|
|
|
+ // 是否全部深度排序
|
|
|
+ allDepthSorted = m_samples.allDepthSorted
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ // 如果有绘制命令需要处理
|
|
|
+ if (drawCommands.drawCommandCount > 0)
|
|
|
+ {
|
|
|
+ // 由于我们不需要剔除,可见性整数数组缓冲区对于每个绘制命令将始终是{0,1,2,3,...}
|
|
|
+ // 所以我们只需分配maxInstancePerDrawCommand并填充它
|
|
|
+
|
|
|
+
|
|
|
+ int visibilityArraySize = maxInstancePerDrawCommand;
|
|
|
+ // 如果实例数量小于最大实例数,则调整可见性数组大小
|
|
|
+ if (m_instanceCount < visibilityArraySize)
|
|
|
+ visibilityArraySize = m_instanceCount;
|
|
|
+ // for (int i = 0; i < visibilityArraySize; i++)
|
|
|
+ // {
|
|
|
+ //
|
|
|
+ // }
|
|
|
+ // 为可见性实例分配内存
|
|
|
+ drawCommands.visibleInstances = Malloc<int>((uint)visibilityArraySize);
|
|
|
+
|
|
|
+ // 由于在此上下文中我们不需要任何视锥剔除,我们将可见性数组填充为{0,1,2,3...}
|
|
|
+ for (int i = 0; i < visibilityArraySize; i++)
|
|
|
+ {
|
|
|
+ drawCommands.visibleInstances[i] = i;
|
|
|
+ // drawCommands.visibleInstances[i] = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // 分配BatchDrawCommand数组(drawCommandCount个条目)
|
|
|
+ // 在SSBO模式下,drawCommandCount将仅为1
|
|
|
+ drawCommands.drawCommands = Malloc<BatchDrawCommand>((uint)drawCommandCount);
|
|
|
+ // 剩余需要处理的实例数
|
|
|
+ int left = m_instanceCount;
|
|
|
+ // 为每个绘制命令填充信息
|
|
|
+ for (int b = 0; b < drawCommandCount; b++)
|
|
|
+ {
|
|
|
+ // 计算当前批次中的实例数量
|
|
|
+ int inBatchCount = left > maxInstancePerDrawCommand ? maxInstancePerDrawCommand : left;
|
|
|
+ drawCommands.drawCommands[b] = new BatchDrawCommand
|
|
|
+ {
|
|
|
+ // 可见性偏移量,所有绘制命令都使用相同的{0,1,2,3...}可见性数组
|
|
|
+ visibleOffset = (uint)0,
|
|
|
+ // 可见实例数量
|
|
|
+ visibleCount = (uint)inBatchCount,
|
|
|
+ // 批次ID
|
|
|
+ batchID = m_batchIDs[b],
|
|
|
+ // 材质ID
|
|
|
+ materialID = m_materialID,
|
|
|
+ // 网格ID
|
|
|
+ meshID = m_meshID,
|
|
|
+ // 子网格索引
|
|
|
+ submeshIndex = 0,
|
|
|
+ // 分割可见性掩码
|
|
|
+ splitVisibilityMask = 0xff,
|
|
|
+ // 标志位
|
|
|
+ flags = BatchDrawCommandFlags.None,
|
|
|
+ // 排序位置
|
|
|
+ sortingPosition = 0
|
|
|
+ };
|
|
|
+ // 减去已处理的实例数
|
|
|
+ left -= inBatchCount;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // 将绘制命令设置到剔除输出中
|
|
|
+ cullingOutput.drawCommands[0] = drawCommands;
|
|
|
+ // 实例排序位置设置为空
|
|
|
+ drawCommands.instanceSortingPositions = null;
|
|
|
+ // 实例排序位置浮点数计数设置为0
|
|
|
+ drawCommands.instanceSortingPositionFloatCount = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // 返回空的作业句柄
|
|
|
+ return new JobHandle();
|
|
|
+ }
|
|
|
+
|
|
|
+}
|